Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Anh
Xem chi tiết
Minh harry
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 10:30

\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

\(maxB=5\Leftrightarrow x=2\)

Minh Hiếu
15 tháng 9 2021 lúc 10:31

MinA=0

⇔x=1 hoặc x=-3 hoặc x=-2 hặc x=-6

B\(=-x^2+2x+1+2x\)

\(=-\left(x^2-2x+1\right)+2\left(1+x\right)\)

\(=-\left(x-1\right)^2-2\left(x-1\right)\)

 

Vũ Đức Khải
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 8 2021 lúc 11:43

a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)

\(ĐTXR\Leftrightarrow x=4\)

b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=1\)

c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 12:18

a: Ta có: \(A=-x^2-8x+1\)

\(=-\left(x^2+8x-1\right)\)

\(=-\left(x^2+8x+16-17\right)\)

\(=-\left(x+4\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=-4

b: Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Thái Hà
Xem chi tiết
Duy Đạt Vũ
Xem chi tiết
Trần Tuấn Hoàng
10 tháng 5 2022 lúc 20:31

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

Trần Tuấn Hoàng
10 tháng 5 2022 lúc 20:37

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)

Trần Tuấn Hoàng
11 tháng 5 2022 lúc 9:04

Bài 3:

\(A=\dfrac{x^2-x+1}{x^2+x+1}=\dfrac{x^2+x+1-2x}{x^2+x+1}=1-\dfrac{2x}{x^2+x+1}\)

*Khi \(x=0\) thì:

\(A=1-\dfrac{2.0}{0+0+1}=1-0=1\).

*Khi \(x>0\) thì: 

-Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\)

\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\ge1-\dfrac{2}{2+1}=\dfrac{1}{3}\)

\(A=\dfrac{1}{3}\Leftrightarrow x=1\left(tmđk\right)\)

-Vậy \(A_{min}=\dfrac{1}{3}\)

-Khi \(x< 0\) thì: Đặt \(x=-y\left(y>0\right)\).

-Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\)

\(\Rightarrow-x-\dfrac{1}{x}\ge2\)

\(\Rightarrow x+\dfrac{1}{x}\le-2\).

\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\le1-\dfrac{2}{-2+1}=3\)

\(A=3\Leftrightarrow x=-1\left(tmđk\right)\)

-Vậy \(A_{max}=3\)

 

Ely's Cherry'ss
Xem chi tiết
Pain zEd kAmi
24 tháng 6 2018 lúc 16:58

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

ᎆኬዑሮ ፈሁዑᎅ
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 7 2021 lúc 7:32

\(A=\dfrac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\dfrac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

\(A_{max}=3\) khi \(x=-1\)

\(A=\dfrac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\dfrac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\dfrac{1}{3}+\dfrac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\dfrac{1}{3}\)

\(A_{min}=\dfrac{1}{3}\) khi \(x=-1\)

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Đức Ạn Nguyễn
Xem chi tiết