cho A=(1/2^2-1).(1/3^2-1).(1/4^2-1).....(1/100^2-1). So sanh A voi 1/2
cho A = (1/2^2-1)(1/3^2-1)(1/4^2-1)...(1/100^2-1). so sanh voi -1/2
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100
A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
A = 1 - 1/100 < 1
nha bn
chúc bn học giỏi
A=(1/2^2-1) * (1/3^2-1) *...*(1/100^2-1) so sanh A voi 2
so sanh A voi 1/2 nhe, khong phai A voi 2 dau
A=(1/2^2-1) * (1/3^2-1) *...*(1/100^2-1) so sanh A voi 1/2
A=(1/22-1)(1/32-1)(1/42-1)...(1/1002-1)
so sanh A voi 1/2
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9900}{100^2}\)
\(A=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.\frac{\left(-3\right).5}{4^2}...\frac{\left(-99\right).101}{100^2}\)
\(A=\cdot\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
\(A=\left(-\frac{1}{100}\right).\frac{101}{2}\)
\(A=-\frac{101}{200}\)
A=(1/2^2-1).(1/3^2-1)....(1/100^2-1)
So sanh A voi -1/2
Mỗi thừa số của A đều nhỏ hơn -1/2 nên
A< (-1/2).(-1/2).(-1/2)....(-1/2) (99 thừa số -1/2) = -1/2^99 <-1/2
Vậy A<-1/2
A = (1/22 - 1).(1/32 - 1).(1/42 - 1)...(1/1002 - 1)
A = -3/22 . (-8/32) . (-15/42) ... (-9999/1002)
A = -(3/22 . 8/32 . 15/42 ... 9999/1002) ( vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
A = -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 99.101/100.100)
A = -(1.2.3...99/2.3.4...100 . 3.4.5...101/2.3.4...100)
A = -(1/100 . 101/2)
A = -101/200 < -100/200 = -1/2
Vậy A < -1/2
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
Cho A = 1/2+2/22+3/23+4/24+......+100/2100. So sanh A voi 2
so sanh A= 1/2^2 + 1/ 3^2 +1/4^2+...+ 1/300^2 voi 3/4