Bài 7: Tính giá trị của biểu thức
Bài 8. a) Tính giá trị của biểu thức 0x2y4z + 7/2x2y4z – 2/5x2y4z tại x = 2 ; y =1/2 ; z = -1.
a) Tính giá trị của biểu thức 2/5x4z3y – 0x4z3y + x4z3y tại x = 2 ; y =1/2 ; z = -1.
b) Tính giá trị của biểu thức xy3 + 5xy3 + ( - 7xy3) tại
c) Tính giá trị của biểu thức tại x = 3, y = -1/2
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
Bài 6: Cho biểu thứ M = x2 – 2y + 3xy. Tính giá trị của M khi x = 2, y = 3
Bài 7: Cho biểu thức P = -x2 - 5xy + 8y2 . Tính giá trị của M tại x = -1 và y = -2
Bài 8: Tính giá trị biểu thức
A = 3x3 y + 6x2y2 + 3xy3 tại
B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 6:
M= 2.2 - 2.3+3.2.3
M= 4 - 6 + 18
M= 20
Bài 7:
P= 1.2 - 5.-1.-2 + 8.-2.2
P = 2 -10 -32
P= -44
Bài 8:
A (thiếu dữ kiện bn ơi)
B= -1.2 . 3.2 + -1.3 +3.3 +-1.3
B= -2 . 6 + -3 + 9 +-3
B= -2 . 6 - 3 + 9 - 3
B= -12 - 3 + 9 - 3
B= -9
Bài 1
Cho biểu thức : A= (2x-1)(4x2+2x+1)-7(x3+1)
a) rút gọn biểu thúc a
B) tính giá trị biểu thức a tại x=-1/2
C) tìm các giá trị nguyên của x để A có giá trị là số nguyên tố
a: \(A=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)
\(=\left(2x\right)^3-1^3-7x^3-7\)
\(=8x^3-1-7x^3-7=x^3-8\)
b: Thay x=-1/2 vào A, ta được:
\(A=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)
Bài 1
Cho biểu thức : A= (2x-1)(4x2+2x+1)-7(x3+1)
a) rút gọn biểu thúc a
B) tính giá trị biểu thức a tại x=-1/2
C) tìm các giá trị nguyên của x để A có giá trị là số nguyên tố
c: \(A=x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
Để A là số nguyên tố thì x-2=1
=>x=3
Bài 2: Tính giá trị của biểu thức:
a. 2205 – ( 35 x 7 ) b. 8700 : 25 x 4
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
a. 2205 - (35 . 7)
= 2205 - 245
= 1960
b. 8700 : 25 . 4
= 348 . 4
= 1392
bài1 : cho biểu thức a = ( 7/13 + 6/13 ) x 100 -13 x a
a. tính giá trị biểu thức a khi a = 10
b. tìm giá trị a để biểu thức a có giá trị = 987
giúp mình vs bài này khó quá
Bài 1: A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x a
Thay a = 10 vào A ta có:
A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x 10
A = \(\dfrac{13}{13}\) x 100 - 130
A = 100 - 130
A = - 30
Thay a = 987 vào biểu thức A ta có:
A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x 987
A = \(\dfrac{13}{13}\) x 100 - 12831
A = 100 - 12831
A = -12731
Bài 6:
a. Tính giá trị của biểu thức n x 129 + m x 71 với n = 3. m = 7
\(=3\times129+7\times71=387+497=884\)
Cho biểu thức với . a) Rút gọn biểu thức ; b) Tìm điều kiện của để ; c) Tìm các giá trị nguyên của để có giá trị nguyên; d)* Với , hãy tìm giá trị lớn nhất của . Bài 8: Cho biểu thức ; với . a) Tính giá trị biểu thức khi . b) Rút gọn biểu thức . c) So sánh với 1. d) Tìm để có giá trị nguyên.
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....