tìm các cặp số nguyên x, y thỏa mãn:
2xy + x + y = 13
tìm cặp số nguyên x, y thỏa mãn x^2 -2xy+3y^2 +8x-8y+13=0
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)
Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)
\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
- Với \(y=-1\) thay vào (1):
\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)
- Với \(y=1\) thay vào (1):
\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
- Với \(y=0\)
\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn\(2y^2+2xy+x+3y-13=0\)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
tìm các cặp số nguyên (x;y) thỏa mãn : x-y+2xy =3
tìm các cặp số nguyên (x;y) thỏa mãn : x-y+2xy =3
tìm các cặp số nguyên (x,y) thỏa mãn 2xy+x+y=14
tìm các cặp số nguyên (x;y) thỏa mãn : x-y+2xy=3
\(x-y+2xy=3\)
\(\Rightarrow2x-2y+4xy=6\)
\(\Rightarrow2x-2y+4xy-1=5\)
\(\Rightarrow\left(2x+4xy\right)-\left(2y+1\right)=5\)
\(\Rightarrow2x\left(2y+1\right)-1\left(2y+1\right)=5\)
\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=5\)
\(x-y+2xy=3\)
\(\Leftrightarrow2\left(x-y+2xy\right)=2\times3\)
\(\Leftrightarrow2x-2y+4xy=6\)
\(\Leftrightarrow2x-2y+4xy-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow2x\left(2y+1\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)
Bạn tự lập bảng để tìm nghiệm nhé
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33
Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33
=>2x(y+7)+y+7=40
=>(y+7)(2x+1)=40
mà x,y nguyên
nên \(\left(2x+1;y+7\right)\in\left\{\left(1;40\right);\left(5;8\right);\left(-1;-40\right);\left(-5;-8\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;33\right);\left(2;1\right);\left(-1;-47\right);\left(-3;-15\right)\right\}\)
tìm các cặp số nguyên x y thỏa mãn 2xy+14x+y=33