Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Tiến Nhật
Xem chi tiết
TRẦN CÔNG MINH
Xem chi tiết
Phạm Thị Mai Anh
22 tháng 7 2020 lúc 16:39

Gọi gđ của ED và HA là O . Ta có:

tam giác MEH cân => góc HEM=MHE

tam giác OEH cân => góc OEH=OHE

mà góc OHE+MHE=90 độ

=> góc HEM+OEH=90 độ

=> EM vuông góc với ED

       DN vuông góc với ED => DEMN là hình thang vuông

Khách vãng lai đã xóa
Huy Hoang
22 tháng 7 2020 lúc 16:41

@Mai Anh : chép mạng nhớ ghi nguồn nhé :>

Khách vãng lai đã xóa
Huy Hoang
22 tháng 7 2020 lúc 16:45

@Mai Anh : Đã nhắc cho rồi thì lấy đó mà làm bài học nhé cậu (: , chứ đừng đi tk sai cho tớ như vậy (:

Khách vãng lai đã xóa
Nguyễn Trần thảo Nguyên
Xem chi tiết
phuong hoang
Xem chi tiết
Huỳnh Ái My
Xem chi tiết
Yêu là số một
13 tháng 9 2018 lúc 20:49

Tại sao phải chứng minh khi nhìn vào đã biết

TRẦN CÔNG MINH
Xem chi tiết
Quỳnh
24 tháng 7 2020 lúc 22:23

A B C H M N E D O

Bài làm

a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)

=> tứ giác AEDH là hình chữ nhật.

=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )

Gọi giao điểm của AH và ED là O

=> Tam giác OHD cân tại O.

=> \(\widehat{AHD}=\widehat{EDH}\)                    (1)

Mà tam giác DHC vuông tại D

Mà DN là đường trung tuyến ( do N là trung điểm HC )

=> DN = HN = HC

=> Tam giác DHN cân tại N

=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân )   (2)

Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)

=> \(\widehat{AHC}=\widehat{EDN}\)

hay \(90^0=\widehat{EDN}\)                  

=> DN vuông góc với ED                    (3)

Vì tam giác OEH cân tại O ( cmt )

=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân )                    (4)

Mà tam giác BEH vuông tại H

Mà EM là trung tuyến ( Do N là trung điểm BH )

=> EM = BM = MH 

=> Tam giác EMH cân tại M.

=> \(\widehat{MEH}=\widehat{MHE}\)                (5) 

Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)

=> \(\widehat{OEM}=\widehat{OHM}\)

hoặc \(\widehat{DEM}=\widehat{AHB}\)

hay \(\widehat{DEM}=90^0\)

=> ME vuông góc với ED (6)

Từ (3) và (6) => ME // DN

=> DEMN là hình thang 

Mà \(\widehat{DEM}=90^0\)( cmg )

=> Hình thang DEMN là hình thang vuông ( đpcm )

Khách vãng lai đã xóa
Phương Anh Nguyễn Thị
Xem chi tiết
Phạm Thị Thu Ngân
21 tháng 3 2017 lúc 13:26

Ta có: góc HEA = góc EAD = góc ADH (=900)

=> tứ giác AEHD là hình chữ nhật

=> ED = AH.

Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT

Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)

Xét tam giác MET và tam giác MHT có:

ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)

=> tam giác MET = tam giác MHT (c-c-c)

=> góc MET= góc MHT =900 (2 góc tương ứng) (2)

Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)

=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)

Từ (2)(3) => EM song song với DN

(vì cùng vuông góc với DE " từ vuông góc đến song song")

=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)

=> hình thang EMND là hình thang vuông

TFBoys
Xem chi tiết
vũ tiền châu
5 tháng 9 2017 lúc 17:30

hình bạn tự vẽ nhé 

hơi tắt nhưng chắc bạn hiểu 

gọi AH giao với ED=O

ta dễ dàng có \(OE=OH;EM=MH\)

=> \(\hept{\begin{cases}\widehat{OEH}=\widehat{OHE}\\\widehat{MEH}=\widehat{MHE}\end{cases}}\)

=> \(\widehat{MED}=\widehat{MHO}=90^o\)

tương tự ta có \(\widehat{EDN}=90^o\)

=> EM//DN(cùng vuông góc với ED=> DEMN là hình thang 

                                                            Mà \(\widehat{EDN}=90^o\)

=> DEMN là hình thang vuông  (ĐPCM)

Nguyễn Thiên Kim
5 tháng 9 2017 lúc 21:34

- Xét \(\Delta BEH\)vuông tại E (vì EH vuông góc với AB) 
có EM là đường trung tuyến 
suy ra BM = ME = MH

- Xét \(\Delta EMH\)có EM = MH (cmt)  suy ra  \(\Delta EMH\)cân tại M
                                                           suy ra  \(\widehat{MEH}=\widehat{MHE}\)                                \(\left(1\right)\)

- Ta có: HE vuông góc với AE (gt)   và  AD vuông góc với AE (gt)        
suy ra  EH // AD
suy ra   EHDA là hình thang

-  Ta lại có:   AE vuông góc với AD (gt)  và HD vuông góc với AD (gt)      
suy ra AE // HD

- Xét hình thang EHDA  có   EA // HD (cmt) và EH // AD (cmt)
suy ra EA = HD và EH = AD

- Dễ thấy  \(\Delta AHE=\Delta DEH\)(c.g.c)
suy ra \(\widehat{HED}=\widehat{EHA}\)                                                                                          \(\left(2\right)\)
- Cộng \(\left(1\right)\)và \(\left(2\right)\)theo từng vế,
ta được: \(\widehat{MEH}+\widehat{HED}=\widehat{MHE}+\widehat{EHA}=90^0\)
suy ra ME vuông góc với ED

- chứng minh tượng tự ND vuông góc với ED
                              mà  ME vuông góc với ED
suy ra ND // ME

- Xét tứ giác  EMND có ND // ME
suy ra EMND là hình thang
mà \(\widehat{MED}=90^0\) suy ra (đpcm)
 

Bạch Hoa Lãng Tử
10 tháng 1 2018 lúc 14:26

Chứng minh O là trực tâm của tam giác ABQ

The Bacodekiller
Xem chi tiết
_Black_Bangtan_Boys_
5 tháng 8 2018 lúc 21:01

1.Giải:

a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC

=> AM là đường trung tuyến ứng với cạnh BC

=> M là trung điểm của cạnh BC

=> AM = BM = \(\frac{1}{2}\)BC

Vì AM = BM => Tam giác ABM cân tại M

b. Vì N là trung điểm của AB

=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM

Mà tam giác ABM cân tại M ( câu a )

=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM

=> \(MN\perp AB\)

Do đó: MN//AC (cùng vuông góc với AB)

=> MNAC là hình thang

Mặt khác: \(\widehat{NAC}\)\(^{90^0}\)(gt) 

=> Tứ giá MNAC là hình thang vuông.