A . 3^×+3^2+2=2430
B. 2^x+3-2^×=224
Cho \(x=\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{225}-\sqrt{224}}{224+225}\) . Chứng minh rằng \(x< \dfrac{7}{15}\) .
3^x+1+3^x+2+3^x+3=9477
[(x^2+54)-42]×2=224
mik ko biết nhưng bạn có thể vào câu hỏi tương tự
Câu a
=> 3.3^x + (3+2+1) = 9477 => 3.3^x = 9471 => 3^x = 9471/3 = 3157 => x= ... có viết sai đb ko hả?
Câu b
x^2 + 54 - 42 = 112 => x^2 + 12 = 112 => x^2 = 100 => x = 10 hoặc -10
tìm x biết: 3^x+3^x+2=2430
2^x+3-2^x=224
3^x+2-3^x+1+3^=189
vậy mà bạn cuxg ghi nx . có nguwoif khác mik sẽ cho họ
tìm x biết: 3^x+3^x+2=2430
2^x+3-2^x=224
3^x+2-3^x+1+3^=189
a: \(\Leftrightarrow3^x\left(1+3^2\right)=2430\)
\(\Leftrightarrow3^x=243\)
hay x=5
b: \(\Leftrightarrow2^x\left(2^8-1\right)=224\)
=>2x=32
hay x=5
2Tìm số tự nhiên x,y biết
a)\(3^x+3^{x+2}=2430\)
b)\(2^{x+3}-2^x=224\)
a) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x+3^x.3^2=2430\)
\(\Rightarrow3^x\left(1+9\right)=2430\)
\(\Rightarrow3^x.10=2430\)
\(\Rightarrow3^x=243=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(2^{x+3}-2^x=224\)
\(\Rightarrow2^x.8-2^x=224\)
\(\Rightarrow2^x\left(8-1\right)=224\)
\(\Rightarrow2^x.7=224\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
tìm x,y,z biết :x^3/8=y^3/64=z^3/216 và x^2+y^2+z^2=224
Ta có :
\(\frac{x^3}{8}\)= \(\frac{y^3}{64}\)= \(\frac{z^3}{216}\) \(\Rightarrow\)\(\frac{x^3}{2^3}\)= \(\frac{y^3}{4^3}\)= \(\frac{z^3}{6^3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}\)=\(\frac{y^2}{4^2}\)=\(\frac{z^2}{6^2}\)
và có : \(^{x^2+y^2+z^2=224}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{224}{56}=4\)
=> \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x\in4;-4\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y\in8:-8\)
\(\frac{z^2}{36}=4\Rightarrow z^2=144\Rightarrow z\in12:-12\)
Vì \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)nên x,y,z cùng dấu
Vậy \(x,y,z\in\left(4;8;12\right);\left(-4;-8;-12\right)\)
Tính tổng: \(A=\dfrac{1}{2+2\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3+3\sqrt{4}}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{255}}\)
Với n > 0 ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\).
Do đó: \(\dfrac{1}{2+2\sqrt{2}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+\dfrac{1}{\sqrt{4}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{224}}-\dfrac{1}{\sqrt{225}}=\dfrac{\sqrt{2}-1}{2}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{225}}=\dfrac{\sqrt{2}-1}{2}+\dfrac{\sqrt{3}}{3}-\dfrac{1}{15}=\dfrac{3\sqrt{2}+2\sqrt{3}-3}{6}-\dfrac{1}{15}=\dfrac{15\sqrt{2}+10\sqrt{3}-17}{30}\)
Tính :\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+....+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
Sorry mới lớp 6 chưa học
thông cảm
no chửi
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vào bài toán ta được
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)
\(=1-\frac{1}{\sqrt{225}}=1-\frac{1}{15}=\frac{14}{15}\)
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)
Giải:
Ta có tính chất tổng quát:
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)
\(=1-\frac{1}{\sqrt{225}}\)