Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
chứng minh rằng tích 3 số nguyên dương liên tiếp ko là lập phương của 1 số tự nhiên
G/s 3 số nguyên dương đó là: \(a;a+1;a+2\) với \(a\inℕ\)
Ta có: \(a\left(a+1\right)\left(a+2\right)=a^3+3a^2+2a\)
Xét: \(a^3+3a^2+2a>a^3\)
Mặt khác: \(a^3+3a^2+2a< a^3+3a^2+3a+1=\left(a+1\right)^3\)
=> \(a^3< a^3+3a^2+2a< \left(a+1\right)^3\)
Mà \(a^3;\left(a+1\right)^3\) là 2 số lập phương liên tiếp
=> \(a^3+3a^2+2a\) không là lập phương của 1 số tự nhiên
=> đpcm
Chứng minh rằng tích ba số tự nhiên liên tiếp trong đó có số chính giữa là lập phương của một số tự nhiên , chia hết cho 504
Cho n là số nguyên dương. Chứng minh nếu n^2 là hiệu lập phương của 2 số tự nhiên liên tiếp thì n là tổng bình phương của 2 số tự nhiên liên tiếp
Chứng minh rằng tích cảu 8 số nguyên dương liên tiếp thì không là lũy thừa bậc 4 của 1 số tự nhiên
một số tự nhiên được gọi là thú vị khi nó là tích của dụng hai số nguyên tố( có thể bằng nhau) .hãy chỉ ra ba số tự nhiên liên tiếp đều là số thú vị. chứng minh rằng 4 số tự nhiên liên tiếp bất kì không thể đồng thời là các số thú vị
Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11; 34 = 2.17; 35 = 5.7
Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\) < \(a_3\) < \(a_4\)
Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị
Xét \(a_1>4\)
Ta có: \(a_1\) ; \(a_2\) ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp
=>Tồn tại i để \(a_i⋮4\); \(i\in\left\{1;2;3;4\right\}\)
khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị
Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Cho n là số nguyên dương sao cho \(\frac{n^2-1}{3}\)là tích của hai số tự nhiên liên tiếp. Chứng minh rằng : 2n-1 là số chính phương và n là tổng hai số chính phương liên tiếp.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
1.Chứng minh tích của 4 số tự nhiên liên tiếp không là số chính phương
2.Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
3.Chứng minh tích của 4 số tự nhiên chẵn liên tiếp cộng 16 là số chính phương
4.Chứng minh tích của 4 số tự nhiên lẻ liên tiếp cộng 16 là số chính phương
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Một số tự nhiên n là tổng bình phương của ba số tự nhiên liên tiếp. Chứng minh rằng n không thể có 17 ước số