Cho \(\sqrt{x}+2\sqrt{y}=10.\) . Chứng minh \(x+y\)\(\ge20\)
Cho \(\sqrt{x}+2\sqrt{y}=10\) . Chứng minh \(x+y\ge20\)
Áp dụng bđt Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow5\left(x+y\right)\ge100\Rightarrow x+y\ge20\) (đpcm)
cho \(\sqrt{x}+2\sqrt{y}=10\)chứng minh rằng \(x+y\ge20\)
Áp dụng BĐT Cauchy–Schwarz ta có:
\(\left(1^2+2^2\right)\left(x+y\right)\ge\left(\sqrt{x}+2\sqrt{y}\right)^2\)
<=> \(5\left(x+y\right)\ge100\)
<=> \(x+y\ge20\)
Dấu "=" xảy ra <=> \(x=4;\)\(y=16\)
ban duong quynh giang oi bdt ay phai la bunhiacopxki moi dung
cho \(\sqrt{x}+2\sqrt{y}=10.CMR:x+y\ge20\)
Áp dụng BĐT Bu nhi a cốp x ki
\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)
=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)
=> \(10^2\le5\left(x+y\right)\)
Tiếp nha
Cho \(\sqrt{x}+2\sqrt{y}=10\) .CMR \(x+y\ge20\)
\(\sqrt{x}=10-2\sqrt{y}\)
\(\Rightarrow x+y=\left(10-2\sqrt{y}\right)^2+y=5y-40\sqrt{y}+100\)
\(=5\left(\sqrt{y}-4\right)^2+20\ge20\)
Cho\(\sqrt{x}+2\sqrt{y}=10\)
Chứng minh : x + y ≥ \(\sqrt{20}\)
\(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
BDT Bunhiacopxki (đề sai phải lớn hơn bằng 20)
\(=>\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)
\(< =>5\left(x+y\right)\ge100=>x+y\ge20\)
\(\sqrt{x}+2\sqrt{y}=10\) chứng minh x+y \(\ge\) 20
help
ta có: \(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
áp dụng BDT Bunhia
\(\sqrt{x}+2\sqrt{y}\le\sqrt{\left(1+2^2\right)\left(x+y\right)}\)
\(=>100\le5\left(x+y\right)=>x+y\ge\dfrac{100}{5}=20\)
a. Cho $x$, $y$ là hai số thực bất kì. Chứng minh $x^2 - xy + y^2 \ge \dfrac13(x^2+xy+y^2).$
b. Cho $x$, $y$, $z$ là ba số thực dương thỏa mãn $\sqrt x + \sqrt y + \sqrt z = 2$. Chứng minh
$\dfrac{x\sqrt x}{x +\sqrt{xy} + y} + \dfrac{y\sqrt y}{y +\sqrt{yz} + z} + \dfrac{z\sqrt z}{z +\sqrt{zx} + x} \ge \dfrac23.$
a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)
\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)
\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).
Dấu bằng xảy ra\(\Leftrightarrow x=y\).
Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).
Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)
Lúc đó:
\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)
\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)
Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)
Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)
\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)
\(\Leftrightarrow A=B\)
Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)
Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)
\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:
\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)
Chứng minh tương tự, ta được:
\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)
Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)
\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)
Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)
Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:
\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)
\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)
\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)
Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).
Cho \(\sqrt{x}+2\sqrt{y}=10\).Chứng minh:\(x+y\ge10\)
ta có\
\(\left(\sqrt{x}+2\sqrt{y}\right)^2\subseteq\left(1^2+2^2\right)\left(x+y\right)\)
\(< =>10^2\subseteq5\left(x+y\right)\)
\(< =>20\subseteq x+y\)
chết mik làm rồi ra v
Cho \(\sqrt{x}+2\sqrt{y}=10\). Chứng minh x+y\(\ge\) 20
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)
\(\Rightarrow\left(x+y\right)\ge\frac{100}{5}=20\Rightarrow x+y\ge20\)