cho hai đường thẳng xx' và yy' cắt nhau tại O. Chứng minh rằng:
a, Góc xOy = x'Oy'.
b, Góc yOx'=xOy'
cho hai đường thẳng xx' và yy' cắt nhau tại O, sao cho góc xOy=36 độ.
a, Tính số đo các góc yOx' ;x'Oy' và y'Ox.
b, Gọi Ot và Ot' lần lượt là tia phân giác của góc xOy và x'Oy'. Chứng minh Ot và Ot' là hai tia đối nhau.
Biết 90−6.(x+2)=3090−6.(x+2)=30. Giá trị của x bằng: ai giúp mk vs
cho hai đường thẳng xx và yy cắt nhau tại O. biết x'Oy + xO'y = 120 tính các góc Xoy Yox x'oy y'ox
Cho định lí: "Nếu hai đường thẳng xx', yy' cắt nhau tại O và góc xOy vuông thì các góc yOx', x'Oy', x'Oy', y'Ox đều là góc vuông".
Hãy vẽ hình
Hai đường thẳng xx’, yy’ cắt nhau tại điểm O và x O y ^ = 90 ° . Cho biết số đo của các góc y O x ' ^ , x ' O y ' ^ , y ' O x ^ .
Cho hai đường thẳng xx' và yy' cắt nhau tại O, sao cho xÔy = 36 độ
a) Tính số đo các góc yOx' ; x'Oy' và y'Õ
b) Gọi Ot và Ot' lân lượt là tia phân giác của góc xOy và x'Oy'. Chứng minh Ot và Ot' là hai tia đối nhau
a) ta có O1+O2=180=> O2=180-O1=180-36=144
TA CÓ : O1=O3 =36 ( đối đỉnh )
O2=O4 =144 ( đối đỉnh)
b) ta có góc tOt'= góc tOx+O4+góc y'Ot'= \(\frac{36}{2}\)+144+ \(\frac{36}{2}\)=180
=> Ot và Ot' nằm trên cùng đường thẳng
mặt khác Ot và Ot' cùng chung gốc O
=> Ot và Ot' là 2 tia đối
Cho định lí: "Nếu hai đường thẳng xx', yy' cắt nhau tại O và góc xOy vuông thì các góc yOx', x'Oy', x'Oy', y'Ox đều là góc vuông".
Điền vào chỗ trống trong các câu sau
Cho định lí: "Nếu hai đường thẳng xx', yy' cắt nhau tại O và góc xOy vuông thì các góc yOx', x'Oy', x'Oy', y'Ox đều là góc vuông".
Viết giả thiết và kết luận của định lí
a/ Hai đường thẳng xx’, yy’ cắt nhau tại điểm O và góc xOy bằng 900 . Hãy đo và cho biết số đo của các góc yOx’, x’Oy’, y’Ox
b/ Hai đường thẳng xx’, yy’ cắt nhau tại điểm O và góc xOy bằng 300 . Hãy đo và cho biết số đo của các góc yOx’, x’Oy’, y’Ox
a ) Ta có : xOy + yOx ' = 180 ( kề bù )
\(\Rightarrow\) 90 + yOx ' = 180
\(\Rightarrow\) yOx ' = 180 - 90 = 90
Lại có : xOy + y ' Ox = 180 ( kề bù )
\(\Rightarrow\) 90 + y ' Ox = 180
\(\Rightarrow\) y ' Ox = 180 - 90 = 90
Ta thấy : xOy ' + y ' Ox ' = 180 ( kề bù )
\(\Rightarrow\) 90 + y ' Ox ' = 180
\(\Rightarrow\) y ' Ox ' = 180 - 90 = 90
b ) Ta có : xOy + yOx ' = 180 ( kề bù )
\(\Rightarrow\) 30 + yOx ' = 180
\(\Rightarrow\) yOx ' = 180 - 30 = 150
Lại có : xOy + yOx '= 180 ( kề bù )
\(\Rightarrow\) 30 + yOx ' = 180
\(\Rightarrow\) yOx ' = 180 - 30 = 150
Ta thấy : x ' Oy + y ' Ox ' = 180 ( kề bù )
\(\Rightarrow\) 150 + y ' Ox ' = 180
⇒ y ' Ox ' = 180 - 150 = 3
Bài làm lại :
a ) \(\widehat{xOy}+\widehat{y'Oy}=180^o\)( KB )
\(\widehat{x'Oy}=180^o-\widehat{xOy}=180^o-90^o=90^o\)( Đối đỉnh )
Vậy \(\widehat{xOy}'=\widehat{y'Ox}=90^o\)( Đối đỉnh )
b ) \(\widehat{xOy}+\widehat{x'Oy}=180^o\)( KB )
\(\widehat{x'Oy}=180^o-\widehat{xOy}=180^o-30^o=150^o\)
Vậy \(\widehat{xOy}=\widehat{x'Oy'}=30^o\)( Đối đỉnh )
\(\widehat{yOx'}=\widehat{y'Ox}=150^o\)( Đối đỉnh )
hai đường thẳng xx' và yy' cắt nhau tại O . Biết số đo 2 góc xOy và yOx' lần lượt tỉ lệ với 2 và 3 .Tính góc x'Oy'