Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tung nguyen viet
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Ngô Linh
Xem chi tiết
thoi dai hiep si
14 tháng 9 2017 lúc 21:46

bai dai dong qua

uzumaki naruto
14 tháng 9 2017 lúc 22:10

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

uzumaki naruto
16 tháng 9 2017 lúc 21:24

2/

b) ( cái bài này chịu)

c) (x+1)^3-(x-1)^3-6(x-1)^2=-10

(x+1-x+1)\(\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)\(-6\left(x^2-2x+1\right)=-10\)

\(2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+12x-6=-10\)

\(2\left(3x^2+1\right)-6x^2+12x-6=0\)

\(6x^2+2-6x^2+12x-6=-10\)

\(12x=-10+4\)

\(12x=-6=>x=-\frac{1}{2}\)

d) (5x-1)^2-(5x-4)(5x+4)=7

\(25x^2-10x+1-25x^2+16=7\)

-10x = 7 - 17

-10x = -10

x= 1

Câu còn lại bn làm tương tự

3/

a) 

Ta có: 

(a+b+c)^2=3(ab+bc+ca)

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac

a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 3ab - 3bc - 3ac = 0

a^2 + b^2 + c^2  - ac - bc - ab = 0

2a^2 + 2b^2 + 2c^2  - 2ac - 2bc - 2ab = 0

(a2-2ab+b2)+(a2-2ac+c2) + (b2-2bc +c2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 =0

=> a=b=c

Đàm Minh Quang
Xem chi tiết
Đỗ Ngọc Khánh Hạ
Xem chi tiết
Nguyễn Thái Hà
Xem chi tiết
Hoàng Miêu
Xem chi tiết
sakura haruko
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$