Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trung Tiến
Xem chi tiết
tran huy vu
Xem chi tiết
Incursion_03
5 tháng 4 2019 lúc 22:19

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

Bùi Đức Toản
5 tháng 4 2019 lúc 22:25

denta ak bạn 

Incursion_03
5 tháng 4 2019 lúc 22:45

cách lớp 8 : ĐKXĐ: (tự làm) (P/S: bài nãy làm lộn dấu nên sai nhé ^^ bỏ đi dùm ak)

Câu 1 đề sai nhé vì nó ko có min 

Câu 2 \(M=\frac{2x+1}{x^2+2}=\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)

Dấu "=" <=> x = 1

Naa Hi
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 8 2021 lúc 10:19

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Lấp La Lấp Lánh
30 tháng 8 2021 lúc 10:24

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:46

e: Ta có: \(E=\left(x-8\right)^2+\left(x+7\right)^2\)

\(=x^2-16x+64+x^2+14x+49\)

\(=2x^2-2x+113\)

\(=2\left(x^2-x+\dfrac{113}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{225}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Sakura Minayo
Xem chi tiết
Thuong Thuon...
8 tháng 10 2017 lúc 11:53

x=50 thư chị hà

Nguyễn Thiều Công Thành
19 tháng 8 2017 lúc 11:06

bài dễ ợt,mỗi vế trừ đi 2

Sakura Minayo
19 tháng 8 2017 lúc 11:09

Bạn thử làm coi , theo cách của bạn ấy !

Xem chi tiết
OH-YEAH^^
24 tháng 9 2021 lúc 8:21

Nở mày nở mặt trên mạng hả bạn :VVV

htfziang
24 tháng 9 2021 lúc 8:22

giúp kiểu j :v 

Nguyễn Mai Lan
24 tháng 9 2021 lúc 8:38

BẠN CỦA BẠN CÒN BIẾT HACK NICK À 

Xem chi tiết
Newton
23 tháng 3 2018 lúc 10:27

Ta có : \(\left|x^2+7\right|\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow x^2+7=0\)

\(\Leftrightarrow x^2=-7\)(Do các số có mũ chẵn luôn ra kết quả là một số nguyên dương nên =>  \(x\in\varnothing\)

Nguyễn Phương Ngân
Xem chi tiết
Hội Yêu Mon Zing Me
Xem chi tiết
hoa anh dao
Xem chi tiết
Nobita Kun
27 tháng 7 2017 lúc 17:09

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

Nobita Kun
27 tháng 7 2017 lúc 16:19

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

Nobita Kun
27 tháng 7 2017 lúc 16:50

Bài 2

a, Đặt \(A=-2\left|x-\frac{3}{4}\right|-\left|y+\frac{3}{4}\right|+\frac{5}{6}\)

Để A đạt GTLN <=> \(-2\left|x-\frac{3}{4}\right|\)đạt GTLN và \(\left|y+\frac{3}{4}\right|\)đạt GTNN

mà \(\left|x-\frac{3}{4}\right|\ge0=>-2\left|x-\frac{3}{4}\right|\le0\)

và \(\left|y+\frac{3}{4}\right|\ge0\)

Do đó \(-2\left|x-\frac{3}{4}\right|=0\)và \(\left|y+\frac{3}{4}\right|=0\)

Vậy GTLN của A = 0 - 0 + 5/6 = 5/6 khi

\(\left|x-\frac{3}{4}\right|=0=>x-\frac{3}{4}=0=>x=\frac{3}{4}\)

Và \(\left|y+\frac{3}{4}\right|=0=>y+\frac{3}{4}=0=>y=-\frac{3}{4}\)

b, Đặt \(B=-\left(x+\frac{1}{2}\right)^2+\frac{5}{7}\)

Để B đạt GTLN thì \(-\left(x+\frac{1}{2}\right)^2\)đạt GTLN

Mà \(\left(x+\frac{1}{2}\right)^2\ge0=>-\left(x+\frac{1}{2}\right)^2\le0\)

Do đó để B đạt GTLN thì \(-\left(x+\frac{1}{2}\right)^2=0\)

Khi đó GTLN của B = 0 + 5/7 = 5/7 khi

\(\left(x+\frac{1}{2}\right)^2=0=>x+\frac{1}{2}=0=>x=-\frac{1}{2}\)