Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thu quyen
Xem chi tiết
hoàng thị phương anh
Xem chi tiết
Vu Hai Nam
Xem chi tiết
Long Thùy Dương
Xem chi tiết
Lê Đình An
5 tháng 7 2016 lúc 21:30

Cm tg AOC và Tg BOD(c.g.c)                                                     

=>AC=BD

Cm tgCOd và tg DOA(c.g.c)

=>BC=AD

tiếp theo cm ABC = BAD(c.c.c)

Lê Đình An
5 tháng 7 2016 lúc 21:31

câu b sai đề hay sao

Hoa Thiên Cốt
Xem chi tiết
akmu
Xem chi tiết
Cô Hoàng Huyền
12 tháng 3 2018 lúc 15:39

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath

Trần Lê Khánh Phương
Xem chi tiết
Nguyễn Tân Vương
9 tháng 3 2022 lúc 17:23

undefined

undefined

Đỗ Tuệ Lâm
9 tháng 3 2022 lúc 16:40

undefined

 

iamnotfine
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 10:14

a: Xét ΔADE vuông tại E và ΔCDA vuông tại A có

góc CDA chung

=>ΔADE đồng dạng với ΔCDA

b: DE*DC=DA^2=AB^2/4

c: DB^2=DE*DC

=>DB/DE=DC/DB

=>ΔDBC đồng dạng với ΔDEB

=>góc DCB=góc DBE

Luffy123
Xem chi tiết
Nguyễn Tất Đạt
30 tháng 12 2017 lúc 18:19

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

Luffy123
1 tháng 1 2018 lúc 13:40

Cảm ơn nhé!

Nguyễn Việt Hoàng
11 tháng 1 2019 lúc 20:30

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \DeltaΔDAC & \DeltaΔBAE: AD=AB; ^DAC=^BAE; AC=AE => \DeltaΔDAC=\DeltaΔBAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \DeltaΔDAC=\DeltaΔBAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \DeltaΔDAQ và \DeltaΔBPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \DeltaΔABM=\DeltaΔFCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét ΔACF & ΔEAD: AC=EA; ^ACF=^EAD; CF=AD => ΔACF=ΔEAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \DeltaΔACF=\DeltaΔEAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \DeltaΔEKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \DeltaΔAMC & \DeltaΔEOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \DeltaΔAMC=\DeltaΔEOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\in∈DE) hay  là trung điểm của DE (đpcm).