x2-y2+z2-t2-2xz+2yt
Phân tích thành nhân tử sử dụng các hằng đẳng thức
phân tích đa thức thành nhân tử
[ (x2 + y2)(z2 + t2) + 4xyzt ]2 - [ 2xy(z2 + t2) + 2zt(x2 + y2) ]
Phân tích đa thức sau thành nhân tử: x2 – 2xy + y2 – z2 + 2zt – t2
x2 – 2xy + y2 – z2 + 2zt – t2
(Nhận thấy x2 – 2xy + y2 và z2 – 2zt + t2 là các hằng đẳng thức)
= (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2 (xuất hiện hằng đẳng thức (3))
= [(x – y) – (z – t)][(x – y) + (z – t)]
= (x – y – z + t)(x – y + z –t)
Phân tích các đa thức sau thành nhân tử: x 2 y + x y 2 + x 2 z + x z 2 + y 2 z + y z 2 + 3xyz.
x 2 y + x y 2 + x 2 z + x z 2 + y 2 z + y z 2 + 3xyz.
= ( x 2 y + x 2 z + xyz) + (x y 2 + y 2 z + xyz) + (x z 2 + y z 2 + xyz)
= x(xy + xz + yz) + y(xy + yz + xz) + z(xz + yz + xy)
= (x + y + z)(xy + xz + yz).
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)+\left(xy^2+y^2z+xyz\right)\)
\(=x\left(xy+xz+yz\right)+z\left(xz+yz+xy\right)+y\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
phân tích đa thức sau thành nhân tử
e,x(y2-z2)+y(z2-x2)+(z2-y2)....help
x2–4xy +4y2–z2+ 2zt –t2 = ??? (Phân tích đa thức thành nhân tử)
x2 - 4xy + 4y2 - z2 + 2zt - t2
= (x2 - 4xy + 4y2) - (z2 - 2zt + t2)
= (x - 2y)2 - (z - t)2
= (x - 2y + z - t)(x - 2y - z + t)
Phương pháp sử dụng hằng đẳng thức:
Phân tích các đa thức sau thành nhân tử:
(a+b)^3-(a^3+b^3)
( a + b )3 - ( a3 + b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b - 3ab2
= 3ab ( a + b )
\(\left(a+b\right)^3-\left(a^3+b^3\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-a^2+ab-b^2\right)\)
\(=3ab\left(a+b\right)\)
Phân tích các đa thức sau thành nhân tử:
(a+b)^3-(a^3+b^3) = 3a . b . (b+a)
nha bạn chúc bạn học tốt nha
:)))))))))
phân tích đa thức thành nhân tử chung sử dụng hằng đẳng thức
9x^6-12x^7+4x^8
\(9x^6-12x^7+4x^8\)
\(=x^6\left(4x^2-12x+9\right)\)
\(=x^6.\left(2x-3\right)^2\)
hk
tốt
phân tích đa thức thành nhân tử
1-2x+2yz+x2-y2-z2
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
\(x^2-2x+1-y^2+2yz-z^2\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
phân tích các đa thức sau thành nhân tử
a) 5x2 - 10xy + 5y2 - 20z
b) x2 - z2 + y2 - 2xy
c) a3 - ay - a2x + xy
d) x2 + 4x + 3
b: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
d: \(x^2+4x+3=\left(x+3\right)\left(x+1\right)\)
=x4−2x3+2x3−4x2+4x2−8x+7x−14=x4−2x3+2x3−4x2+4x2−8x+7x−14
=(x−2)(x3+2x2+4x+7)