Thu gọn các đa thức rồi tìm bậc của chúng:
a)5x^2yz.(-8xy^3z)
b) 15xy^2z.(-4/3x^2yz^3).2xy
Thu gọn các đa thức sau rồi tìm bậc của chúng
a) \(5x^2yz\left(-8xy^3z\right)\)
b) \(15xy^2z\left(\dfrac{-4}{3}x^2yz^3\right).2xy\)
\(a.5x^2yz.\left(-8xy^3z\right)=-40x^3y^4z^2\)
có bậc là:9
\(b.15xy^2z\left(-\dfrac{4}{3}x^2yz^3\right).2xy=-5x^4y^4z^4\)
có bậc là:12
a)\(=\left(-8.5\right)\left(x^2x\right)\left(yy^3\right)\left(zz\right)=-40x^3y^4z^2\)
bậc : 3+4+2=9
b)\(=\left(15\cdot\dfrac{-4}{3}.2\right)\left(xx^2x\right)\left(y^2yy\right)\left(z^3z\right)=-40x^4y^4z^4\)
bậc : 4+4+4=12
a, thu gọn và chỉ ra bậc của đa thức A=( 9x^2yz).(-2xy^3 )
b, tìm đa thức m biết : 3x^2+3xy-x^3-M=3x^2+2xy-4y^2
giải giúp em với
a: \(A=-18x^3y^4z\)
Bậc là 8
b: \(M=3x^2+3xy-x^3-3x^2-2xy+4y^2=-x^3+xy+4y^2\)
a) Tìm các đơn thức đồng dạng trong các đơn thức sau: 5x^2yz ; -x^2y ; -2x^2yz ; x^2yz ; 0,2x^2yz b)Thu gọn và sắp xếp đa thức sau theo lũy thừa giảm của biển M(x)=3x^2 + 5x^3 - x^2+x-3x-4 c)Cho hai đa thức P(x)=x^3x+3 và Q(x)=2x^3+3x^2+x-1. Tính P(x) +Q(x)
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
(3x^2y)*(5x^3y^3)
(-5x^3y^2z)*(4x^2yz)
Thu gọn đơn thức rồi cho biết hệ số, phần biến và bậc Của đơn thức.
Thu gọn các đa thức sau rồi tìm bậc của chúng:
a) 5x2yz(-8xy3z);
b) 15xy2z(-4/3x2yz3). 2xy
a) 5x2yz(-8xy3z)
= 5x2yz - 8xy3z
= -3x2yz
Bậc : 4
15xy2z(-4/3x2yz3). 2xy
= [15 . (-4/3) . 2 ] . ( x . x . x2) . (y2 . y . y ) . ( z . z3)
= -40x4y4z4
Bậc : 12
BT4: Thu gọn, chỉ ra phần hệ số và tìm bậc của các đơn thức sau:
a, -x^3y^4z^5.(-2)
b, -2xy^2xy^2z.3^2
c, 6xyxy^3.(-6)
d, -xy^2z.(-5)x^2yz^2
a: =-2x^3y^4z^5
Hệ số: -2
Bậc: 12
Biến: x^3;y^4;z^5
b; =-18x^2y^4z
hệ số: -18
Bậc: 7
biến: x^2;y^4;z
c: =-36x^2y^4
hệ số: -36
bậc: 6
Biến; x^2;y^4
d: =5x^3y^3z^3
hệ số: 5
Bậc: 9
biến: x^3;y^3;z^3
a) 6xy.2x3yz2=(6.2).(x.x3).(y.y).z2=12x4.y2.z2
=> Hệ số: 12; Phần biến: x4y2z2; Bậc đơn thức: 8
b) 12x3y2.(-3/4 xy2)= [12.(-3/4)]. (x3.x).(y2.y2)= -9.x4.y4
=> Hệ số: -9; Phần biến: x4.y4; Bậc đơn thức: 8
c)
\(\dfrac{1}{5}x^3y.\left(-5x^4yz^3\right)=\left[\dfrac{1}{5}.\left(-5\right)\right].\left(x^3.x^4\right).\left(y.y\right).z^3\\ =-x^7y^2z^3\)
=> Hệ số: -1; Phần biến: x7y2z3; Bậc đơn thức: 12
d) \(-\dfrac{3}{8}x^3y^2z.\left(4x^2yz\right)^3=\left[-\dfrac{3}{8}.4^2\right].\left(x^3.x^{2.3}\right).\left(y^2.y\right).\left(z.z^3\right)=-6.x^9y^3z^4\)
=> Hệ số: -6; Phần biến: x9y3z4; Bậc đơn thức: 16
a) Ta có: \(6xy\cdot2x^3yz^2\)
\(=\left(6\cdot2\right)\cdot\left(x\cdot x^3\right)\cdot\left(y\cdot y\right)\cdot z^2\)
\(=12x^4y^2z^2\)
Hệ số là 12
Phần biến là \(x^4;y^2;z^2\)
Bậc là 8
b) Ta có: \(12x^3y^2\cdot\left(-\dfrac{3}{4}xy^2\right)\)
\(=\left[12\cdot\left(-\dfrac{3}{4}\right)\right]\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\)
\(=-9x^4y^4\)
Hệ số là 9
Phần biến là \(x^4;y^4\)
Bậc là 8
Thu gọn các đa thức sau :
a) \(2x^2yz+4xy^2z-5x^2yz+xy^2z-xyz\)
b) \(x^3-5xy+3x^3+xy-x^2+\dfrac{1}{2}xy-x^2\)
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
cho đa thức P=\(11x^{\text{4}}y^3z^2+20x^2yz-\left(4xy^2z-10x^2yz+3x^4y^3z^2\right)-\left(2008xyz^2+8x^{\text{4}}y^3z^2\right)\)
a)tìm bậc của P
b)tính P nếu 15x-2y=1004z