A = 20 + 21 + 22 + .....+ 270 - 271
B = 5 + 52 + 53 + .....+ 5100 - \(\frac{5}{4}\)101
\(C=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)
RÚT GỌN
\(A=\frac{12+\frac{12}{7}-\frac{12}{25}-\frac{12}{71}}{4+\frac{4}{7}-\frac{4}{25}-\frac{4}{71}}:\)\(\frac{3+\frac{3}{13}+\frac{3}{15}+\frac{3}{15}+\frac{3}{101}}{5+\frac{5}{13}+\frac{5}{15}+\frac{5}{101}}\)
\(B=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+......+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{99.100}}\)
giải phương trình
a,\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-20)+(x-19)+(x-18)+...+100+101=101
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
CMR: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+ \frac{1}{102}\right)=\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\)
dạng 1 : so sánh
a) P = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và Q = \(1\frac{3}{4}\)
dạng 2 : toán chứng minh
1. cho S = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{130}\)chứng minh rằng : \(\frac{1}{4}< S< \frac{91}{330}\)
2. cho S = \(\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\). CMR : 3 < S < 8
3. CMR : \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
2.a) Vào question 126036
b) Vào question 68660
a)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
b)\(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)
c)\(\left(\frac{\frac{3}{5}+\frac{3}{11}-\frac{3}{17}}{1+\frac{5}{11}-\frac{5}{17}}+\frac{\frac{4}{7}-\frac{8}{23}-\frac{12}{139}}{\frac{5}{7}-\frac{10}{23}-\frac{7}{21}}\right):3\frac{1}{5}\)
GIÚP MÌNH VỚI Ạ
b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)
\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)
\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)
\(=\frac{22}{29}.\)
Chúc bạn học tốt!
Chứng minh :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)\)\(-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}+\frac{1}{102}\right)\)\(=\)\(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\)
Mik đng cần gấp , giúp mik nha, giải kĩ cho mik nha
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{101}+\frac{1}{102}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)
\(=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
\(=VP\)
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
B=\(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
t tưởng mọi hôm bài này m làm thạo lắm mà bây h chịu ak
B=\(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(B=-1\frac{1}{5}\cdot\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}}\div\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(B=\frac{-6}{5}\cdot4\div\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(B=\frac{-24}{5}\div\frac{4}{5}\)
\(B=-6\)
\(B=-1\frac{1}{5}.\frac{4.\frac{3}{7}}{\frac{3}{37}}:\frac{4+3.\frac{4}{1}}{5+3.\frac{5}{1}}\)
\(B=-\frac{6}{5}.\frac{148}{7}:\frac{4}{5}\)
\(B=-\frac{222}{7}\)