x/3 = y/4 va 2x + 5y = 10
áp dụng tính chất của dãy tỉ số bằng nhau
x/y=3/4 và 2x+5y=-78 (áp dụng tính chất dãy tỉ số bằng nhau)
Ta có:4x=-7y ⇒⇒x−7=y4x−7=y4⇒⇒2x−14=3y122x−14=3y12
Theo tính chất của dãy tỉ số bằng nhau ta có:
2x−14=3y12=2x−3y−14−12=−78−26=32x−14=3y12=2x−3y−14−12=−78−26=3
2x−14=3⇒2x=3×(−14)=−42⇒x=−42÷2=−212x−14=3⇒2x=3×(−14)=−42⇒x=−42÷2=−21
3y12=3⇒3y=12×3=36⇒y=36÷3=123y12=3⇒3y=12×3=36⇒y=36÷3=12
Vậy x=-21,y=12
Từ \(\frac{x}{y}=\frac{3}{4}\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{-78}{26}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-3\\\frac{y}{4}=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-9\\y=-12\end{cases}}\)
câu hỏi đi bạn
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{x-1}{2}=\frac{y-z}{3}=\frac{z-3}{4}\)và \(2x+3y-z=50\)
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
Dựa theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)
Rút gọn đi, ta có:
\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)
Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)
Kết luận: .....
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)
Có: \(x+y+z=49\)
\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)
\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)
\(k.\frac{49}{12}=49\)
\(\Rightarrow k=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Tham khảo nhé~
\(\frac{x}{3}=\frac{y}{4}\)và 2x+5y=10.nhớ trình bày cách giải theo lớp 7 áp dụng dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}\)và \(2x+5y=10\)
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)và \(2x+5y=10\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{5}{13}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2x}{6}=\frac{5}{13}\\\frac{4y}{20}=\frac{5}{13}\end{cases}\Rightarrow\hept{\begin{cases}\frac{15}{13}\\\frac{25}{13}\end{cases}}}\)
\(KL\)
Tìm x với x = 5y và 3y - 2x = -14 ( Áp dụng tính chất dãy tỉ số bằng nhau)
suy ra \(\frac{x}{5}=\frac{y}{1}\)suy ra \(\frac{2x}{10}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{10}=\frac{3y}{3}=\frac{3y-2x}{3-10}=\frac{-14}{-7}=2\)
\(\frac{2x}{10}=2\)suy ra\(2x=20=10\)
\(\frac{3y}{3}=2\)suy ra\(3y=6=2\)
Vậy x=10;y=2
k đúng nha bạn hiền
\(x=5y\Rightarrow\frac{x}{5}=\frac{5y}{5}\Rightarrow\frac{x}{5}=\frac{y}{1}\Rightarrow\frac{2x}{10}=\frac{3y}{3}=\frac{3y-2x}{3-10}=\frac{-14}{-7}=2\)
=>x/5 = 2 => x=10
y/1 = 2 => y = 2
\(\dfrac{2}{x}\)=\(\dfrac{y}{5}\) và 2x - y = 3
tìm x và y (sử dụng tính chất dãy tỉ số bằng nhau / đặt k)
ĐKXĐ: x<>0
2x-y=3
=>\(y=2x-3\)
\(\dfrac{2}{x}=\dfrac{y}{5}\)
=>\(\dfrac{2}{x}=\dfrac{2x-3}{5}\)
=>x(2x-3)=10
=>\(2x^2-3x-10=0\)
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{89}}{4}\left(nhận\right)\\x=\dfrac{3-\sqrt{89}}{4}\left(nhận\right)\end{matrix}\right.\)
Khi \(x=\dfrac{3+\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3+\sqrt{89}}{4}-3=\dfrac{-3+\sqrt{89}}{2}\)
Khi \(x=\dfrac{3-\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3-\sqrt{89}}{4}-3=\dfrac{-3-\sqrt{89}}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
3x = y ; 5y = 4z và 6x + 7y +8z = 456
Khó vãi !!!!!!
h\(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12};5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\Leftrightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}\)
Áp dụng tính chất dãy tính chất dãy tỉ số băng nhau ta có:
\(\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)
Khi đó: \(\frac{6x}{24}=2\Rightarrow x=8;\frac{7y}{84}=2\Rightarrow y=24;\frac{8z}{120}=2\Rightarrow z=30\)
vì 3x=y suy ra x/1=y/3(1)
5y=4z suy ra y/4=z/5(2)
từ 1 và 2 suy ra x/4=y/12=z/15
áp dụng dãy tỉ số bằng nhau
suy ra x/4=y/12=z/15=(6x+7y+8z)/228=2
tự làm tiieps
vì 3x=y suy ra x/1=y/3(1)
5y=4z suy ra y/4=z/5(2)
từ 1 và 2 suy ra x/4=y/12=z/15
áp dụng dãy tỉ số bằng nhau
suy ra x/4=y/12=z/15=(6x+7y+8z)/228=2
tự làm tiếp nhé
Tìm x,y:(Áp dụng tính chất của dãy tỉ số bằng nhau)
\(\dfrac{2}{x}\)=\(\dfrac{y}{9}\)và\(\dfrac{x}{4}\)=\(\dfrac{y}{8}\)
Ta có: \(\dfrac{2}{x}=\dfrac{y}{9}\)
nên xy=18
Đạt \(\dfrac{x}{4}=\dfrac{y}{8}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)
Ta có: xy=18
\(\Leftrightarrow32k^2=18\)
\(\Leftrightarrow k^2=\dfrac{9}{16}\)
Trường hợp 1: \(k=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=3\\y=8k=6\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-3\\y=8k=-6\end{matrix}\right.\)
Câu 1 : cho tỉ lệ thức a/b =c/d .Chứng minh : \(\dfrac{a+2b}{a-2b}\) = \(\dfrac{c+2d}{c-2d}\)
Câu 2 : Tìm x,y,z biết : (áp dụng công thức dãy tỉ số bằng nhau)
a) 2x=3y , 5y =7z và 3x+5y-7z =30.
b) \(\dfrac{x-1}{2}\)=\(\dfrac{y+3}{4}\)=\(\dfrac{z-5}{6}\)và 5z-3x-4y=50.
c) \(\dfrac{1}{2}\)x =\(\dfrac{2}{3}\)y=\(\dfrac{3}{4}\)z và x-y=15.