Tìm x biết 3*x=2*y và (x+y)^3-(x-y)^3=126
Tìm x, y, z biết:
a) x/2 = y/3 ; y/2 = z/5 và x+y+z = 50
b) 3x = 2y và (x+y)^3 - (x-y)^3 = 126
c) (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x + 2y + 4z = 47
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
Tìm x,y biết:
1) 4x = 3y và ( x - y )2 + ( x +y )2 = 50
2) 3x = 2y và ( x + y )3 - ( x - y )3 = 126
3) 2x = 5y và ( x + y )3 ( x - y )3 = 2960
Tìm x, y, z biết:
1: 3x = 2y và (x+y)^3 - (x-y)^3 = 126
2: (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x+2y+4z = 47
Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath
tìm x, y, z biết:
1: 3x = 2y và (x+y)^3 - (x-y)^3 = 126
2: (x+1)/3 = (y+2)/-4 = (z-3)/5 và 3x+2y+4z = 47
Tìm x, y, z biết x = y phần 2 = z phần 3 và x mũ 2 cộng y mũ 2 cộng z mũ 2 = 126
Theo đề bài ta có;
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và x2+y2+z2=126
Áp dụng tính chất dãy tỉ số bằng nhau;
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)= \(\frac{\text{x^2+y^2+z^2}}{1^2+2^2+3^2}\)=\(\frac{126}{14}\)= 9
Vì x phần 1=9 suy ra x =9x1=9
Vì y phần 2=9 suy ra y=9x2=18
Vì z phần 3=9 suy ra z=9x3=27
Tìm x,y : 3x = 2y và (x+y)3 - (x-y)3 = 126
3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
=>x=2k; y=3k
\(\left(x+y\right)^3-\left(x-y\right)^3=126\)
=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)
=>\(\left(5k\right)^3-\left(-k\right)^3=126\)
=>\(126k^3=126\)
=>k3=1
=>k=1
=>\(x=2\cdot1=2;y=3\cdot1=3\)
Tìm x,y biết
1. 3x=2y và x3 -y3 = 37
2. 3x=2y và (x +y)3 -( x-y )3= 126
3. 3x= 2y và 2x3 + 3y3 =97
Tìm x,y : 3x = 2y và (x+y)3 - (x-y)3 = 126
Tìm các số x, y, z biết rằng:
a) x : y : z = 5 : 3 : 4 và x + 2y – z = –126
b) 5x = 2y, 3y = 5z và x + y + z = –970
c) 3x = 4y = 5z và x + y + z = 47
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
c, \(3x=4y=5z\Rightarrow\frac{3x}{60}=\frac{4y}{60}=\frac{5z}{60}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{47}{47}=1\)
\(x=20;y=15;z=12\)