Tứ giác ABCD có AD=BC. Các đường trung trực của AB và CD cắt nhau tại E
Chứng minh rằng góc EAB= góc EDC
cho tứ giác ABCD có AD=BC, các đường trung trực của AB và CD cắt nhau ở E, CMR: góc EAB = góc EDC
giúp toyyy
đề bài sai phảo là cho tứ giác ABCD là hình thanh cân chứ
Vì E thuộc đường trung trực của AB. Suy ra EA=EB hay △EBA cân ở E. Suy ra EAB^=180o−AEB^2 (1)
Vì E thuộc đường trung trực của AB. Suy ra EA=EB hay △EBA cân ở E. Suy ra ...
Cho tứ giác ABCD thỏa mãn góc DAC=DBC. AC cắt BD tại E. Các đường trung trực của AD và BC cắt nhau tại O. Giả sử rằng điểm O nằm bên trong tam giác EDC.
a)CMR góc ODA+OCA=ODB+OCB
b)CMR OA=OB=OC=OD
giúp mik với
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Tứ giác ABCD có góc A + góc C = 180o. Các đường thẳng AD, BC cắt nhau ở M. Các đường thẳng AB, CD cắt nhau ở N. Phân giác của góc DMC cắt AB ở E, CD ở F. Phân giác của góc AND cắt BC ở H, AD ở G. Chứng minh EF và GH có trung điểm chung.
Tứ giác ABCD có AC vuông góc với BD tại H và HB=HD. Gọi E, F theo thứ thự là trung điểm AB, BC Qua E kẻ đường vuông góc với CD cắt BD
Chứng minh rằng :
a, I là trực tâm của tam giác HEF
b, FI vuông góc AD
Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
Bài 1 : Cho tứ giác lồi ABCD có góc A + góc C = 180 độ, AB<AD, AC là tia phân giác của góc BAD . Chứng minh rằng BC = DC
Bài 2 : Cho tứ giác lồi ABCD có góc B + góc D = 180 độ. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Vẽ 2 tia phân giác của 2 góc BFC và CED, chúng cắt nhau tại M. Chứng minh rằng EMF = 90 độ
Bài 1: Cho tứ giác ABCD biết góc A : B : C : D = 1 : 2 : 3 : 4
a) Tính các góc của tứ giác ABCD
b) Chứng minh: AB // CD
c) Gọi giao điểm của AD cắt BC = E. Tính các góc của tam giác CDE
Bài 2: Cho tứ giác ABCD có góc C = \(80^0\) , D = \(70^0\) . Các tia phân giác của các góc A và B cắt nhau tại I. Tính AIB
Bài 3: Cho tứ giác ABCD có AB = BC; CD = DA
a) Chứng minh rằng BD là đường trung trực của AC
b) Cho biết góc B = \(100^0\) ; D = \(70^0\) . Tính góc A và C
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
Cho Tứ giác ABCD có các góc đối bù nhau . hai đường thẳng AD và BC cắt nhau tại E , đường thẳng AB và CD cắt nhau tại F . tia phân giác của góc BFC cắt AD và BC lần lượt tại P và Q , tia phân giác của góc CED cắt FP ở M
Chứng minh tam giác EPQ cần từ đó suy ra tổng số đo của EMF