phân tích đa thưc thành nhân tử
a) a2bc2d - ab2cd2 +a2bcd2 - ab2c2d
b)ab(a-b) +bc(b-c)+ca(c-a)
Phân tích đa thức thành nhân tửA=abc-(ab+bc+ca)+a+b+c-1
A = abc - (ab + bc + ca) + a + b + c - 1
= (abc - ab) - (bc - b) - (ac - a) + (c - 1)
= ab(c - 1) - b(c - 1) - a(c - 1) + (c - 1)
= (ab - b - a + 1)(c - 1)
= (a - 1).(b - 1).(c - 1)
Phân tích đa thức thành nhân tửA=8abc+4(ab+bc+ca)+2(a+b+c)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
phân tích đa thức thành nhân tử
a,A=x3+y3+z3-3xyz
b,B=(x+y)3+(y-z)3+(z-x)3
c,C=(x2+x+1) (x2+x+2)-12
d,D=bc(b+c)+ac(c-a)-ab(a+b)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
Phân tích đa thức thành nhân tử:
D= ab. (a + b) + bc.(b + c) + ca. (c + a) + 3abc.
Ta có: \(D=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(=a^2b+ab^2+b^2c+bc^2+ac^2+a^2c+3abc\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ: ab(a+b)-bc(b+c)+ca(a-c)
ai biết trả lời nhanh hộ mình nha! Mình k đúng cho!
Co P=ab(a-b) + bc((b-a)+(a-c)) +ac(c-a)
=ab(a-b) -bc(a-b) -bc(c-a) +ac(c-a)
=(a-b)(ab-bc) +(c-a)(ac-bc)
=(a-b) b (a-c) + (c-a) c (a-b)
=(a-b)(a-c)(b-c)
phân tích đa thức thành nhân tử ab(a + b) + bc(b + c) + ca(c + a) + abc
sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)
\(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)
\(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)
\(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)
\(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Phân tích đa thức sau thành nhân tử: A= (a+b+c).(bc+ca+ab)-abc
\(A=\left(a+b+c\right).\left(bc+ca+ab\right)-abc\\ =abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc-abc\\ =\left(b^2c+bc^2\right)+\left(a^2b+a^2c\right)+\left(ac^2+abc\right)+\left(ab^2+abc\right)\\ =bc\left(b+c\right)+a^2\left(b+c\right)+ac\left(b+c\right)+ab\left(b+c\right)\\ =\left(b+c\right)\left(bc+a^2+ac+ab\right)\\ =\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
(a + b + c)(bc + ca + ab) − abc
=(a + b)(bc + ca + ab) + c(bc + ca + ab) − abc
=(a + b)(bc + ca + ab)+ abc + c2(a + b) − abc
=(a + b)(bc + ca + ab + c2)
=(a + b)(b + c)(c + a)
Phân tích đa thức thành nhân tử
ab*(a+b)-bc*(b+c)+ca*(c+a)+2abc
phân tích đa thức thành nhân tử
ab(a+b) - bc(b+c) + ca(a+c) + abc
\(ab\left(a+b\right)-bc\left(b+c\right)+ca\left(a+c\right)+abc\)
\(=a^2b+ab^2-b^2c-bc^2+ca^2+c^2b+abc\)
\(=a^2b+ab^2-b^2c+a^2c+abc\)
Đến đây thì mk chịu