Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anikawa
Xem chi tiết
Võ Đông Anh Tuấn
18 tháng 9 2016 lúc 10:19

\(P=x^3+y^3+26xy=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)xy\)

   \(=\left(x+y\right)\left(x^2+y^2\right)\)

   \(=26.\left(x^2+y^2\right)\)

   \(=13.\left(x^2+y^2\right)\left(1^2+1^2\right)\ge12.\left(x+y\right)^2=13.26^2=8788\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=13\)

Vâỵ \(MIN_B=8788\) khi và chỉ khi \(x=y=13\)

Chúc bạn học tốt hihi

Demeter2003
Xem chi tiết
Minh Nguyễn Cao
31 tháng 5 2018 lúc 8:48

Ta có:

\(P=x^3+y^3+26xy\)

Vì: x + y = 26

\(P=x^3+y^3+\left(x+y\right)xy\)

\(P=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)xy\)

\(P=\left(x+y\right)\left(x^2+y^2\right)\)

\(P=26\left(x^2+y^2\right)\)

Mà \(x^2+y^2\ge0\left(\forall x,y\inℝ\right)\)

=> x^2 + y^2 đạt giá trị nhỏ nhất khi x = y = 13

Vậy MinP = 26(13^2 + 13^2) = 8788

pham trung thanh
31 tháng 5 2018 lúc 8:49

\(P=x^3+y^3+26xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+26xy\)

\(=26\left(x^2-xy+y^2\right)+26xy\)

\(=26\left(x^2+y^2\right)\)

Lại có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{26^2}{2}\)

\(\Rightarrow P\ge26.\frac{26^2}{2}=8788\)

Dấu = xảy ra khi x=y=13

vinh2k52
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

loc2k5
Xem chi tiết
tth_new
9 tháng 5 2019 lúc 8:31

Em có cách này không biết có đúng không ạ,em mới lớp 7 thôi.

\(S=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2x^2-2xy+2y^2\)

Đặt \(S=2x^2-2xy+2y^2=a\left(x+y\right)^2+b\left(x-y\right)^2\) (ta đi tìm a, b)

Phân tích ra ta được: \(a\left(x+y\right)^2+b\left(x-y\right)^2\)

\(=ax^2+2xy.a+ay^2+bx^2-2xy.b+by^2\)

\(=\left(a+b\right)x^2+2xy\left(a-b\right)+\left(a+b\right)y^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}a+b=2\\a-b=-1\end{cases}}\).Giải ra ta tìm được: a = 1/2 và b = 3/2

Do đó: \(S=2x^2-2xy+2y^2=\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}\left(x-y\right)^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}.4=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\x+y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Leftrightarrow x=y=1\)

Vậy \(S_{min}=2\Leftrightarrow x=y=1\)

Con Chim 7 Màu
9 tháng 5 2019 lúc 8:58

\(S=x^3+y^3\) 

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=2\left(x^2-xy+y^2\right)\ge2\left[\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}\right]=2\left(2-1\right)=2\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=2\end{cases}\Leftrightarrow x=y=1}\)

Vậy \(S_{min}=2\)khi \(x=y=1\)

:))

Nguyễn Đại Nghĩa
Xem chi tiết
vũ tiền châu
30 tháng 4 2018 lúc 10:06

Ta có \(c=\left(x+y\right)^2-xy\)

mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

=> C\(\ge\frac{3}{4}\)

Dấu = xảy ra <=> x=y=1/2

Pham To Uyen
30 tháng 4 2018 lúc 10:10

Ta có: \(x^2\) >=0 với mọi x

           \(y^2\)>=0 với mọi y

=> \(x^2\)+\(y^2\)>= 0 với mọi x,y

=> \(x^2\)+\(y^2\)+xy >=xy

Nắng Hạ
30 tháng 4 2018 lúc 10:15

\(C=\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x+y\right)^2\ge\frac{1}{2}.\frac{\left(x+y\right)^2}{2}+\frac{1}{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

"=" khi \(x=y=\frac{1}{2}\)

Nguyễn
Xem chi tiết
Nhật Hạ
15 tháng 5 2021 lúc 9:32

Ta có: 3x + y = 1 => y = 1 - 3x

a, Thay y = 1 - 3x vào M, ta có:

\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)

\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy GTNN M = 1/4 khi x = y = 1/4

b, Thay y = 1 - 3x vào N

\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)

\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)

Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2

Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
Tạ Duy Phương
12 tháng 12 2015 lúc 20:09

\(A=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=9\)  ( BĐT Cauchy - Schwart)

Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{x}=\frac{2}{y}\) và x + y = 1 \(\Rightarrow y=2x=2\left(1-y\right)\Rightarrow y=\frac{2}{3}\Rightarrow x=\frac{1}{3}\)

Vậy min A = 9 khi và chỉ khi \(y=\frac{2}{3};x=\frac{1}{3}\)

Phạm Thế Mạnh
12 tháng 12 2015 lúc 20:11

\(A=\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\)
Có:\(\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\ge\frac{9}{x+\frac{1}{2}y+\frac{1}{2}y}=9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}y=\frac{1}{3}\)
tick nhé
 

phan tuấn anh
Xem chi tiết
Trần Đức Thắng
12 tháng 12 2015 lúc 21:04

Áp dụng BĐT Bun .... :

\(A=\frac{1}{x}+\frac{4}{y}=\left(x+y\right)\left(\frac{1}{x}+\frac{4}{y}\right)=\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2\right]\)

\(\ge\left[\sqrt{x}\cdot\frac{1}{\sqrt{x}}+\sqrt{y}\cdot\frac{2}{\sqrt{y}}\right]^2=\left(1+2\right)^2=9\)

Vậy Min A =  9 tại \(\frac{\sqrt{x}}{\frac{1}{\sqrt{x}}}=\frac{\sqrt{y}}{\frac{2}{\sqrt{y}}}\Rightarrow x=\frac{y}{2}\) thay vào x + y = 1 Giải ra x ; y