Bài 1 cho parabol (P): y= x2 và đường thẳng d: y= 1/2x
a) vẽ đồ thị của (P) và d trên cùng hệ trục toạ độ
b) xác đingj toạ độ giao điểm của (P) và d
c) Dựa vào đồ thị, hãy giải bất phương trình x2 lớn hơn hoặc bằng 1/2x
Bài 2 Cho parabol (P): y= 2x2 và đường thẳng d: y= x + 1
a) vẽ (P) và d trên cùng hệ trục toạ độ
b) Tìm toạ độ giao điểm của (P) và d
c) Dựa vào đồ thị, hãy giải bất phương trình 2x2 - x - 1 < 0
câu 1: a) vẽ parabol (p): y= 1/2x^2 và đường thẳng (d): y=3/2x-1 trên cùng 1 mặt phẳng toạ độ
b) xác định toạ độ giao điểm của (p) và (d) bằng phép toán
câu 2: a) vẽ đồ thị hàm số (p): y=x^2 và (d): Y=-x+2 trên cùng 1 hệ trục toạ độ
b) xác định toạ độ giao điểm của (p) và (d)
câu 3: cho hai hàm số y=x^2 và y=-2x+3
a) vẽ các đồ thị của hai hàm số này trên cùng một hệ trục toạ độ
b) tìm toạ độ giao điểm của hai đồ thị đó
Cho parabol (p) y=x^2 và đường thẳng (d) y=2x+m+3. Tìm m để đường thẳng (d) cắt Oy tại điểm có tung độ bằng 8. Khi đó hãy tìm toạ độ giao điểm của (d) và (P).
Vì đường thẳng (d) cắt Oy tại điểm có tung độ bằng 8
Nên m+3=8⇔ m=5
Theo pt hoành độ giao điểm của (d) và (P)
Ta có:\(x^2=2x+8\)
⇔\(x^2-2x-8=0\)
\(\Delta'=\left(-1\right)^2-\left(-8\right)=9\)
\(\sqrt{\Delta'}=\sqrt{9}=3>0\)
Vậy pt có 2 nghiệm pb
x1=\(\dfrac{1+3}{1}=4\)
x2=\(\dfrac{1-3}{1}=-2\)
Với x =4 thì y=x2=42=16
Với x =-2 thì y=x2=(-2)2=4
Vậy ......
Cho Parabol (P) y=x mũ hai và (d) : y= 2x +m mũ hai + 9 Tìm toạ độ giao điểm của P và d khi m =1
`m=1 => y=2x+1^2+9=2x+10`
Phương trình hoành độ giao điểm:
`x^2=2x+10`
`<=>x^2-2x-10=0`
`<=>` \(\left[{}\begin{matrix}x=1-\sqrt{11}\\x=1+\sqrt{11}\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}y=12-2\sqrt{11}\\y=12+2\sqrt{11}\end{matrix}\right.\)
`=>` Tọa độ 2 giao điểm là: `(1-\sqrt11 ; 12-2\sqrt12) ; (1+\sqrt11 ; 12+2\sqrt11)`.
Cho parabol (P) y= 2x2 và đthang (d) y= x - m + 1 ( với m là tham số )
a. Vẽ (P)
b. Tìm tất cả các giá trị của m để ( P ) cắt ( đ ) có một điểm chung
c. Tìm toạ độ các điem thuộc (P) có hoành độ bằng hai lần tung độ
Cho Parabol (P): y=x^2 và đường thẳng (d): y=2x-m^2+9
a. Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
b. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Giải chi tiết hộ mình nha
a) Khi \(m=1\) \(\Rightarrow\left(d\right):y=2x+8\)
Xét phương trình hoành độ giao điểm
\(x^2=2x+8\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
+) Với \(x=4\Rightarrow y=16\)
+) Với \(x=-2\Rightarrow y=4\)
Vậy khi \(m=1\) thì (P) cắt (d) tại 2 điểm phân biệt \(\left(4;16\right)\) và \(\left(-2;4\right)\)
b) Xét phương trình hoành độ giao điểm
\(x^2-2x+m^2-9=0\) (*)
Ta có: \(\Delta'=10-m^2\)
Để (P) cắt (d) \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=10-m^2>0\) \(\Leftrightarrow-\sqrt{10}< m< \sqrt{10}\)
Theo đề: (P) cắt (d) tại 2 điểm nằm về 2 phía của trục tung
\(\Leftrightarrow\) Phương trình (*) có 2 nghiệm trái dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1x_2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}10-m^2>0\\m^2-9< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{10}< m< \sqrt{10}\\-3< m< 3\end{matrix}\right.\) \(\Leftrightarrow-3< m< 3\)
Vậy ...
Trong mặt phẳng toạ độ Oxy, cho parabol (P) y=x^2 và đường thẳng (d) y=x+2.
a) vẽ parabol (P) và đường thẳng (d) trên cùng mặt phẳng toạ độ Oxy.
b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính.
c) viết phương trình đường thẳng (d') có dạng y=ax+b , biết (d') song song với (d) và đi qua điểm M(2:5)
`a)`
`@ O(0;0), A(1;1), B(-1;1) in (P)`
`@ C(0;2), D(-2;0) in (d)`
`b)` Ptr hoành độ của `(P)` và `(d)` là:
`x^2=x+2`
`<=>x^2-x-2=0`
Ptr có: `a-b+c=1+1-2=0`
`=>x_1=-1;x_2=-c/a=2`
`=>y_1=1;y_2=4`
`=>(-1;1), (2;4)` là giao điểm của `(P)` và `(d)`
`c)` Vì `(d') //// (d)=>a=1` và `b ne 2`
Thay `a=1;M(2;5)` vào `(d')` có:
`5=2+b<=>b=3` (t/m)
`=>` Ptr đường thẳng `(d'): y=x+3`
Trong mặt phẳng tọa độ cho đường thẳng và parabol
b)Tìm m để đường thẳng d cắt p tại 2 điểm có hoành độ x1,x2 thoả mãn:
2y1+4mx2-2x^2-3<0