cm n thuộc Z+ thì 62n+19n-2n+1 chia hết cho 17
Cho n thuộc Z
Cm: A=n^3-19n chia hết cho 6
Cho n thuộc Z
Cm: A=n^3-19n chia hết cho 6
\(A=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số tự nhiên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮6\)
=>A chia hết cho 6
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
cm n \(\in Z\) thì 6n+19n-2n+1 chia het cho 17
CMR với mọi x
\(6^{2n}+19n-2^{n+1}\)chia hết cho 17
BT1:Tìm x biết:
a.x^2-9=2(x+3)^2
b.4x^2-4x+1=(5-x)^2
BT3:C/m với mọi m thuộc Z ta có:
a.(2n-1)^3-(2n-1) chia hết cho 8
b.n^3-19n chia hết cho 6
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow x^2-9=2x^2+12x+18\)
\(\Leftrightarrow x^2-2x^2-12x=18+9\)
\(\Leftrightarrow-x^2-12x=27\)
\(\Leftrightarrow x^2+12x+27=0\)
\(\Leftrightarrow\left(x+6\right)^2=9=3^2=\left(-3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=3\\x+6=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-9\end{cases}}\)
Cho n thuộc Z, cmr : a) 6^2n+19^n-2^n+1 chia hết cho 17
N thuộc z ko chia hết cho 3 .cm P=22n+2n+1 chia hết cho 7
Bài 1 : cm 32010 + 52010 chia hết cho 13
bài 2: cm 241917+ 141917 chia hết cho 19
bài 3: cm vs n thuộc N*, ta có :
a, 62n+ 19n - 2n+1 chia hết cho 17
b, 62n + 1 + 5n+2 chia hết cho 31
c, 212n+1+ 172n+1 + 15 chia hết cho 19
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
32010=(33)670≡1670(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
52010=(52)1005≡(−1)1005(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
32010+52010" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> chia hết cho 13
32010+52010=(33)670+(52)1005=27670+251005=(26+1)670+(26−1)1005=26A+1670−11005=26A⋮13" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:44.919em; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:center; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">