Rút gọn:
\(C=\frac{12.435+2.352.6+3.213.4}{2+4+6+...+98+100-550}\)
Rút gọn
4^2+4^4+4^6+....4^98+4^100
Bạn nhân phép tính này với 4^2 rồi trừ đi phép ban đầu là ok
lả sao bạn, bạn ví dụ dùm mình được không
bạn có thệ làm chi tiết dc ko
rút gọn \(S=\frac{2+4500+135+550\times2}{2+4+6+...+16+18}\)
Cho A=3\(^1\)+3\(^2\)+...+3\(^{2006}\)
a)Rút gọn A
b)Tìm x để 2A+3=3\(^x\)
Rút gọn tổng sau:
A=1+2^2+2^4+2^6+...+2^98+2^100
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)
Rút gọn:
\(B=\frac{1+15^4+15^8+...+15^{96}+15^{100}}{\left(1+15^4+15^8+...+15^{96}+15^{100}\right)+\left(15^2+15^6+...+15^{98}+15^{102}\right)}\)
rút gọn :\(\frac{101+100+99+98+.,.+3+2+1}{101-100+99-98+...+3-2+1}\)
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)
= \(\frac{5050}{51}\)
Rút gọn
A=1*4/2*3+2*5/3*4+3*6/4*5+.........+98*101/99*100
Rút gọn các tổng sau:
a) A = 2 - 2\(^2\) + 2\(^3\) - 2\(^4\) + ... + 2\(^{99}\) - 2\(^{100}\)
b) B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{98}\) + 2\(^{100}\)
c) C = 1 - 2\(^3\) + 2\(^6\) - 2\(^9\) + ... + 2\(^{60}\) - 2\(^{63}\) + 2\(^{69}\)
d) D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^4}\) + ... + \(\dfrac{1}{3^{100}}\)
e) E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) - \(\dfrac{1}{4^3}\) + ... + \(\dfrac{1}{4^{98}}\) - \(\dfrac{1}{4^{99}}\) + \(\dfrac{1}{4^{100}}\)
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.
\(\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
Hãy rút gọn
Đặt \(A=\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{100.\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)}\)
\(\Rightarrow A=\frac{20.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}}\)
\(\Rightarrow A=\frac{\frac{20}{11}+\frac{20}{12}+..+\frac{20}{100}}{\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}+\frac{1}{100}}\)
Giúp mình với ạ ! mình đang cần gấp
Rút gọn biểu thức
a) A= 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +.....+ 99 - 100
b)B= 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
c)C=1 - 2 - 3 + 4 + 5 - 6 - 7 + ....... + 97 - 98 - 99 + 100
d)D= 2^2024 - 2^2023 -......- 1
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với