Cho hình than ABCD (AB//CD). AC cắt BD tại O. Biết OA=OB.Chứng minh rằng ABCD là hình thang cân
1,cho hình thang abcd (ab//cd) ac cắt bd tại o. biết oa=ob.chứng minh abcd là hình thang cân
2. cho hình thang cân abcd (ab//cd,ab<cd ). Ad cắt bc tại o
a > CMR Tam giac OAB cân
b > Gọi I,J lần lượt là trung điểm của Ab và Cd. CMR ba điểm I, J,O thẳng hàn
c, Qua diểm M thuộc cạnh Ac vẽ đường thằng // với cd,cắt bd tại N. CMR MNAB ,MNDC là các hình thang cân
vì oa=ob
=>tam giác aob là tam giác cân tại o (đn tam giác cân)
=>góc oab=góc oba
mà ab//cd
=> abcd là hình thang cân
đúng thì k cho mik vs ạ
BÀI 10; cho hình thang ABCD ( AB // CD ), AC cắt BD tại O biết OA = OB. CM; ABCD là hình thang cân.
Theo đề ra OA = OB => \(\Delta OAB\) cân tại O => \(\widehat{OAB}=\widehat{OBA}\)
Ta có \(\widehat{OCD}=\widehat{OAB}=\widehat{OBA}=\widehat{ODC}\)
\(\Rightarrow\Delta OCD\) cân tại O \(\Rightarrow OC=OD\)
\(\Rightarrow AC=OA+OC=OB+OD=BD\)
Hình thang ABCD có hai đường chéo AB và BD bằng nhau nên ABCD là hình thang cân
Bài 1. Cho điểm M nằm trong tam giác đều ABC. Chứng minh rằng MA, MB, MC là độ dài ba cạnh của một tam giác. Bài 5. Cho hình thang cân ABCD (AB k CD). AC cắt BD tại O. Gọi E, F, G lần lượt là trung điểm của BC, OA, OD. Biết rằng tam giác EF G đều. Chứng minh rằng AOB, COD cũng là các tam giác đều.
Bài 5. Cho hình thang cân ABCD (AB k CD). AC cắt BD tại O. Gọi E, F, G lần lượt là trung điểm của BC, OA, OD. Biết rằng tam giác EF G đều. Chứng minh rằng AOB, COD cũng là các tam giác đều.
Bài 1: Cho hình thang ABCD (AB//CD); AC giao với BD tại O. Chứn minh rằng OA . OD = OB . OC
Bài 2: Cho hình thang ABCD (AB//CD); một đường thẳng song sonh với AB cắt AD, BC, AC, BD lần lượt tại M, N, P, Q. Chứng minh rằng MN=PQ.
Bài 3: Cho hình thang ABCD (AB//CD); E thuộc BC. Kẻ CK//AE (K thuộc AD). Chứng minh rằng BK//DE.
Cho ABCD là hình thang cân (AB // CD) có hai đường chéo cắt nhau tại O.
a. Chứng minh: OA = OB và OC = OD
b. Chứng minh: AC + BD > AB + CD
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho ABCD là hình thang cân (AB // CD) có hai đường chéo cắt nhau tại O.
a. Chứng minh: OA = OB và OC = OD
b. Chứng minh: AC + BD > AB + CD
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: ˆACD=ˆBDCACD^=BDC^
hay ˆODC=ˆOCDODC^=OCD^
Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Bài 1. Cho hình thang ABCD , O là giao điểm 2 đường chéo AC và BD . Chứng minh rằng : ABCD là hình thang cân nếu OA = OB
Bài 2 : Cho hình thang ABCD ( AB // CD ), AB < CD . Tia phân giác góc A và góc D cắt nhau tại E , tia phân giác góc B và góc C cắt nhau tại F.
a) Tính góc AED , góc BFC
b) Giả sử AE và BF cắt nhau tại M nằm trên cạnh CD . Chứng minh rằng AD + BC = DC
c) Với giả thiết như câu b) , Chứng minh EF nằm trên đường trung bình của hình thang ABCD
Mọi người vẽ hình hộ em nha!
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
Cho hình thang cân ABCD (AB//CD) và AB < CD, DA cắt CB tại I. AC cắt BD tại K. Chứng minh IK là trục đối xứng của hình thang ABCD.
cho hình thang cân ABCD( AB//CD) . AD cắt BC tại I, AC cắt BD tại J . chứng minh rằng IJ là trung trực của AB và là trung trực của CD