Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
阮草~๖ۣۜDαɾƙ
Xem chi tiết
Nguyen Hong Hung
20 tháng 8 2019 lúc 21:39

Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)

Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)\(4n-2⋮2,4n+8⋮4\)

Hưng Nguyễn Quốc
20 tháng 8 2019 lúc 21:39

(4n+3)^2-25

=(4n+3)^2-5^2

=(4n+3+5)(4n+3-5)

=(4n+8)(4n-8)

=[4(n+2)][2(n-4)]

=8(2+n)(n-4)luôn chia hết cho 8 

Vậy...

Hưng Nguyễn Quốc
20 tháng 8 2019 lúc 21:40

xin lỗi mình làm muộn

shoppe pi pi pi pi
Xem chi tiết
 Mashiro Shiina
4 tháng 9 2018 lúc 0:12

\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)

\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)

\(=3n\left(3n+8\right)⋮3\)

Ha Ngoc Le
Xem chi tiết
Pham Quang Phong
Xem chi tiết
Yen Nhi
15 tháng 5 2021 lúc 20:06

Bài 2:

\(\left(2n+3\right)^2-9\)

\(\rightarrow4n^2+12n+9-9\)

\(\rightarrow4n^2=12n\)

\(\rightarrow4n.\left(n+3\right)\)

\(\rightarrow4⋮4\)

\(\rightarrow4n⋮4\)

\(\rightarrow4n.\left(n+3\right)⋮4\)

\(\rightarrow\left(2n+3\right)^2-9⋮4\)

Khách vãng lai đã xóa
Nguyễn Thùy Linh
Xem chi tiết
o0o I am a studious pers...
15 tháng 7 2016 lúc 8:04

\(\left(4n+3\right)^2-25\)

\(=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)\)chia hết cho 8 ( đpcm )

Vũ Quang Vinh
15 tháng 7 2016 lúc 8:10

Theo đầu bài ta có:
\(\left(4n+3\right)^2-25\)
\(\Leftrightarrow\left(4n+3\right)^2-5^2\)
\(\Leftrightarrow\left[\left(4n+3\right)+5\right]\left[\left(4n+3\right)-5\right]\)
\(\Leftrightarrow\left[4n+8\right]\left[4n-2\right]\)
\(\Leftrightarrow\left[4\left(n+2\right)\right]\left[2\left(2n-1\right)\right]\)
\(\Leftrightarrow8\left(n+2\right)\left(2n-1\right)\)
Do 8 ( n + 2 ) ( 2n - 1 ) chia hết cho 8 nên ( 4n + 3 )2 - 25 chia hết cho 8 với mọi số nguyên n.    ( đpcm )

Huỳnh Thị Thiên Kim
15 tháng 7 2016 lúc 8:43

\(\left(4n+3\right)^2-25\)

\(=16n^2+24n+9-25\)

\(=16n^2+24n-16\)chia hết cho 8 vs mọi số nguyên n

Hoàng thị Hiền
Xem chi tiết
Nguyễn Ngọc Đạt
21 tháng 11 2017 lúc 18:48

Có ( 4n + 3 )^2 - 25

= ( 4n + 3 )( 4n + 3 ) - 25

= 16n^2 + 12n + 12n + 9 - 25

= 16n^2 + n( 12 + 12 ) - 16

= 16n^2 + 24n - 16

= 8( 2n^2 + 3n - 2 )

=> ( 4n + 3 )^2 - 25 chia hết cho 8

nguyễn hoàng lê thi
Xem chi tiết
hattori heiji
1 tháng 1 2018 lúc 22:08

(4n+3)2-25

=[(4n+3)-5][(4n+3)+5]

=(4n+3-5)(4n+3+5)

=(4n-2)(4n+8)

=2(2n-1)4(n+2)

=8(2n-1)(n+2)

vì 8⋮8

=> 8(2n-1)(n+2)⋮8

hay (4n+3)2-25⋮8(với mọi n)(đpcm)

Chúc Nguyễn
1 tháng 1 2018 lúc 21:54

(4n + 3)2 - 25

= (4n + 3)2 - 52

= (4n + 3 - 5)(4n + 3 + 5)

= (4n - 2)(4n + 8)

= 16n2 + 32n - 8n - 16

= 16n2 + 24n - 16

= 8(2n2 + 3n - 2)

Vì 8 ⋮ 8 nên 8(2n2 + 3n - 2) ⋮ 8

Hay (4n + 3)2 - 25 ⋮ 8

Ngô Song Linh
Xem chi tiết
chelsea
19 tháng 9 2016 lúc 20:29

a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16

Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8

=>16n^2-8n+32n-16 chia hết cho 8

b)(2n+3)^2-9

=(2n+3-3)(2n+3+3)

=2n(2n+6)=4n^2+12n

Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4

Lộc Vũ
Xem chi tiết
Tuanhonghai2006 Hoang
28 tháng 1 2018 lúc 20:20

A=3^(2n+3)+2(4n+1)chia hết cho 25 có thể dùng pp như phần a để giải phần này tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) Pp lựa chọn phần dư: A=3^(2n+3)+2^(4n+1) gọi 3^(2n+3)=B,2^(4n+1)=C n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 C=2^5=32 chia 25 dư 7 B+C chia 25 dư bằng 18+7chia 25 dư 0 giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25