chứng minh : \(\sqrt{2012^2+2012^2\cdot2013^2+2013^2}\) là số tự nhiên
Chứng minh \(A=\sqrt{2012^2+2012^22013^2+2013^2}\)là số tự nhiên
A2=20122+2012220132+20132
A2=(2013-1)2+20132+2012220132
A2=2.20132-2.2013+1+2012220132
A2=2012220132+2.2013(2013-1)+1
A2=(2012.2013+1)2 \(\Rightarrow\)A=2012.2013+1 la so tu nhien
Chứng minh \(\sqrt{2012^2+2013^2.2012^2+2013^2}\) là 1 số tự nhiên
minh bik lam ne
đặt a =2012
\(\Rightarrow A=\sqrt{a^2+a^2\left[a+1\right]^2+\left\{a+1\right\}^2}\)
\(=\sqrt{a^2+a^4+2a^3+a^2+2a+1}\)
\(=\sqrt{a^4+2a^3+3a^2+2a+1}\)
\(=\sqrt{\left[a^2+a+1\right]^2}\)
\(=a^2+a+1\)
\(=2012^2+2012+1\) là 1 số tự nhiên
nguời ko biết làm đỡ hơn những ko góp ý kiến mà nói như mơ chó mơ vịt nha Ngọc Vĩ
cho A=\(\sqrt{2012^2+2012^2.2013^2+2013^2}\) chứng minh A là một số tự nhiên
\(A^2=2012^2+2012^2.2013^2+2013^2\)
\(A^2=\left(2013-1\right)^2+2013^2+2012^2.2013^2\)
\(A^2=2.2013^2-2.2013+1+2012^2.2013^2\)
\(A^2=2012^2.2013^2+2.2013.\left(2013-1\right)+1\)
\(A^2=\left(2012.2013+1\right)^2\Rightarrow A=2012.2013+1\) là số tự nhiên
Cho\(A=\sqrt{2012^2+2012^2\times2013^2+2013^2}\)
Chứng minh: A là số tự nhiên
\(A^2=2012^2+2012^2.2013^2+2013^2\)
\(A^2=\left(2013-1\right)^2+2013^2+2012^2.2013^2\)
\(A^2=2.1013^2-2.2013+1+2012^2.2013^2\)
\(A^2=2012^2.2013^2+2.2013\left(2013-1\right)+1\)
\(A^2=\left(2012.2013+1\right)^2\)
\(\Rightarrow A=2012.2013+1\) là số tự nhiên
Cho biểu thức: \(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\). CMR A là 1 số tự nhiên ?
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2012^2+\left(2012.2013\right)^2+2013^2}\)
\(=2012+2012.2013+2013\)
Vậy A là một số tự nhiên
P/s: Mình nghĩ thế, không chắc!
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{\left(2013-1\right)^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2.2013^2-2.2013+1+2012^2.2013^2}\)
\(=\sqrt{2.2013.\left(2013-1\right)+1+2012^2.2013^2}\)
\(=\sqrt{2012^2.2013^2+2.2013.2012+1}=\sqrt{\left(2012.2013+1\right)^2}=2012.2013+1\)
\(A=\frac{1\cdot2}{2\cdot2}\cdot\frac{2\cdot3}{3\cdot3}\cdot\frac{3\cdot4}{4\cdot4}\cdot\frac{4\cdot5}{5\cdot5}\cdot.................\cdot\frac{2012\cdot2013}{2013\cdot2013}\)với
\(B=\frac{2012\cdot2013-2012\cdot2012}{2012\cdot2011+2012\cdot2}\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}.\frac{4.5}{5.5}.....\frac{2012.2013}{2013.2013}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2012}{2013}=\frac{1.2.3.4.5....2012}{2.3.4.5....2013}=\frac{1}{2013}\)
\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}=\frac{2012.\left(2013-2012\right)}{2012.\left(2011+2\right)}=\frac{2012}{2012.2013}=\frac{1}{2013}\)
\(\Rightarrow A=B\)
Chứng minh rằng với mọi số tự nhiên n ta có \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) chia hết cho 2
Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)
\(A=2n+\left(...6\right)+\left(...1\right)\)
Ta có : 2n là số chẵn
\(2012^{2013}\) là số chẵn
\(2013^{2012}\) là số lẻ
\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ
Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ
=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n ta đều có:
(n+2012^2013)(n+2013^2012) chia hết cho 2
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.