Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô nguyễn phương anh
Xem chi tiết
KAl(SO4)2·12H2O
6 tháng 3 2018 lúc 15:10

PT tương đương:

\(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)

Mà: \(x,y\inℤ\)

Nên: \(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow x=y=1\)

Vậy: x = y = 1.

Comebacktome
6 tháng 3 2018 lúc 15:08

Ta có x3+y3=3xy-1

=> (x+y)3-3xy(x+y)-3xy+1=0

=>[(x+y)3+1]-3xy(x+y+1)=0

=>(x+y+1)[(x+y)2-x-y+1)]-3xy(x+y+1)=0

=>(x+y+1)(x2-xy+y2-x-y+1)=0

Vì x,y là các số nguyên dương nên x+y>0

=>x+y+1>1

=>x+y+1 khác 0

=>x2-xy+y2-x-y+1=0

=>2x2-2xy+2y2-2x-2y+2=0

=>(x-y)2+x2-2x+1+y2-2y+1=0

=>(x-y)2+(x-1)2+(y-1)2=0

=>(x-y)2 bé hơn hoặc bằng 0

    (y-1)2 bé hơn hoặc bằng 0

    (x-1)2 bé hơn hoặc bằng 0

Mà (x-y)lớn hơn hoặc bằng 0

      (x-1)2 lớn hơn hoặc bằng 0

      (y-1)2  lớn hơn hoặc bằng 0

=>(x-y)2=0

    (y-1)2=0

    (x-1)2=0

=>x=y=1

KAl(SO4)2·12H2O
6 tháng 3 2018 lúc 15:11

\(x^3+y^3+1\ge3xy\)

Dấu "=" xảy ra khi x = y = 1. 

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Huỳnh Thiên Tân
25 tháng 9 2018 lúc 19:12

Nếu x = 1 => y = 1 thỏa 
Nếu x ≥ 2 thì đặt (x³ + x):(3xy - 1) = m ∈ N (vì x, y nguyên dương nên 3xy - 1 nguyên dương) 
=> x³ + x = m(3xy - 1) => x² + 1 = 3my - m/x (1) => m/x = 3my - x² - 1 = p ∈ N => m = px thay vào (1) có: 
x² + 1 = 3pxy - p (2) => x + 1/x = 3py - p/x => (p + 1)/x = 3py - x = q ∈ N 
=> p + 1 = qx => p = qx - 1 thay vào (2) có: 
x² + 1 = 3(qx - 1)xy - (qx - 1) = 3qx²y - 3xy - qx + 1 
=> x + q = 3y(qx - 1) ≥ 3(qx - 1) ( vì y ≥ 1) 
=> 3qx - x - q ≤ 3 <=> (3q - 1)(x - 1) ≤ 4 - 2q ≤ 2 (vì q ≥ 1) 
Mà 3q - 1 ≥ 2 và x - 1 ≥ 1 => 3q - 1 = 2 và x - 1 = 1 => x = 2 
thay x = 2 vào biểu thức ban đầu có 10/(6y - 1) ∈ N => y = 1 
Đs: (x; y) = (1; 1); (2; 1) 
 

Tuấn Anh Đỗ
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
1 tháng 10 2020 lúc 21:00

Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)

Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p

+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.

+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:

\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)

Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)

\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)

Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5

Khi đó x = y = 2.

Khách vãng lai đã xóa
Nguyễn Văn
Xem chi tiết
bùi xuân dũng
Xem chi tiết
Vũ Thị NGọc ANh
Xem chi tiết
Cô Hoàng Huyền
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Trần Việt Khoa
Xem chi tiết
Trần Minh Hoàng
16 tháng 1 2021 lúc 22:20

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 0:00

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

Nguyễn Việt Lâm
26 tháng 12 2020 lúc 0:08

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

Phạm Thị Huyền Trang
Xem chi tiết
Vũ Huy Hoàng
12 tháng 8 2020 lúc 14:19

phải là tìm các số x,y,z thỏa mãn chứ bạn

Khách vãng lai đã xóa
FL.Hermit
12 tháng 8 2020 lúc 14:34

VÌ:    \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)

Do:    \(x^3+y^3+1-3xy\)   là 1 số nguyên tố

=>   \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)    là 1 số nguyên tố.

Do:   \(x+y+1>1\left(x,y\inℕ^∗\right)\)

=>   \(x^2+y^2-xy-x-y+1=1\)

<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)

<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

Do:   \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\)    đều là các số chính phương.

=> Ta xét 3 trường hợp sau: 

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\)   ;     \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\)    ;       \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)

Do: x; y thuộc N* 

=> vs TH1 được: \(x=y=2\)

THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\)       (CHỌN)

TH2; TH3 tương tự ra       \(x=1;y=2\)   và     \(x=2;y=1\)

THỬ LẠI        \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\)             (ĐỀU LOẠI HẾT).

VẬY \(x=y=2\)     là nghiệm duy nhất.

Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 8 2020 lúc 16:11

Hermit Hermit  ở trường hợp thứ nhất của bạn bị thiếu ạ! \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\) phải là thế này, bạn thiếu (y-1)2=1

Khách vãng lai đã xóa