Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Tuấn Phạm
Xem chi tiết
Tô Hoài Dung
Xem chi tiết
Nguyễn Ánh Tuyền
Xem chi tiết
nguyen ngoc diem quynh
Xem chi tiết
thachset
27 tháng 7 2018 lúc 5:52

KHÔNG BIẾT

Nguyễn Ngọc Anh
Xem chi tiết
Trí Tiên亗
2 tháng 9 2020 lúc 9:53

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

Khách vãng lai đã xóa
Dương Thanh Ngân
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Nguyễn Thị Anh
6 tháng 7 2016 lúc 10:32

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

LuKenz
Xem chi tiết
Hoàng Thảo
Xem chi tiết
Despacito
6 tháng 4 2018 lúc 8:42

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right]\)  \(:\frac{\sqrt{x}+1-2}{x-1}\)

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right]:\frac{\sqrt{x}-1}{x-1}\)

\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Despacito
6 tháng 4 2018 lúc 8:52

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}\)

\(\Leftrightarrow P=1-\frac{2}{\sqrt{x}+1}\)

để \(P\in Z\) \(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=-1\Leftrightarrow\sqrt{x}=-2\)  ( vô lí ) 

+) \(\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

+) \(\sqrt{x}+1=-2\Leftrightarrow\sqrt{x}=-3\)  ( vô lí ) 

+) \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\)

vậy để \(P\in Z\) thì \(x\in\left\{1;0\right\}\)