\(2x=\sqrt{3+\frac{1}{2}\sqrt{3+\frac{1}{2}\sqrt{3+\frac{1}{2}\sqrt{x+3}}}}\)
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Tính
3) \(\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{2x-\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{3x\sqrt{x}-2x+\sqrt{x}-3}{x\sqrt{x}+1}\)
4) \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
5)\(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-5\sqrt{x}+6}\)
Help !!! Mk đang cần gấp ,thank các ben
Rút gọn:
R = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
X = \(\left(\frac{\sqrt{x}+2}{3\sqrt{x}}+\frac{2}{\sqrt{x}+1}-3\right):\frac{2-4\sqrt{x}}{\sqrt{x}+1}-\frac{3\sqrt{x}+1-x}{3\sqrt{x}}\)
Rút gọn
\(1.A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(2.B=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
\(3.C=\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right).\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
giải pt
a) \(2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{5x-2}{x}\)
b) \(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{5x-3}{2x}+9\)
c) \(\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{12-9x}{x}+6\)
d) \(\frac{x-1}{x}-2\sqrt{\frac{x-1}{x}}=3\)
e) \(\sqrt{\frac{x}{x-1}}+\sqrt{\frac{x-1}{x}}=\frac{3}{\sqrt{2}}\)
f) \(\sqrt{x-\frac{1}{x}}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)
\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)
\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)
b/ ĐKXĐ: ...
\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)
Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)
\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)
Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)
\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)
\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)
\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)
\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)
e/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)
\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)
f/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)
Bình phương 2 vế:
\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
Tìm x để B=3A,biếtA=\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}+\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)\) /\(\left(\frac{1}{2\sqrt{5}+3\sqrt{2}}-\frac{1}{2\sqrt{5}-3\sqrt{2}}\right)\)
B=\(\frac{2x^4-x^3+2x^2+x-4}{2x^3-x^2-2x+1}\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
e/ ĐKXĐ: ...
\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)
Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)
\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)
f/ ĐKXĐ: ...
\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)
Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)
\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)
Giải phương trình:
a) \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}=2\)
b) \(2\sqrt[3]{\frac{2x-3}{1-x}}+\sqrt[3]{\frac{1-x}{2x-3}}=3\)
c) \(x+\frac{1}{x}+4\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+6=0\)
a) \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}=2\)
Ta có: \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}\ge2\sqrt{\sqrt{\frac{2x-1}{x+1}}\cdot\sqrt{\frac{x+1}{2x-1}}}=2\) (BĐT Cô-si)
Mà \(\sqrt{\frac{2x-1}{x+1}}+\sqrt{\frac{x+1}{2x-1}}=2\) (theo đề bài)
Suy ra dấu bằng phải xảy ra \(\Rightarrow\sqrt{\frac{2x-1}{x+1}}=\sqrt{\frac{x+1}{2x-1}}\) \(\Leftrightarrow\frac{2x-1}{x+1}=\frac{x+1}{2x-1}\) \(\Leftrightarrow\left(2x-1\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+1\\2x-1=-x-1\end{matrix}\right.\Leftrightarrow\) \(x=2\) (tmđkxđ) hoặc \(x=0\) (không tmđkxđ)
Vậy \(S=\left\{2\right\}\).
Bạn đừng quên tự tìm ĐKXĐ cho câu a nhé bạn.
c) \(x+\frac{1}{x}+4\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+6=0\) ĐKXĐ: \(x>0\)
Vì \(x>0\Rightarrow x+\frac{1}{x}+4\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+6>0\)
Vậy \(S=\varnothing\).