\(\left(x+1\right)^{12}=2016^0\)
\(\text{Tìm x: }2x^2\left(x-1\right)-3x\left(x-1\right)+2016\left(x-1\right)=0\)
(x-1)(2x2-3x+2016) =0
x-1 =0 => x = 1
còn lại 2x2 -3x +2016 =0
giải theo denta cho nhanh
Tìm x , y, z :
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+|x+2y-z|^{2017}=0\)
Ta có
(x -1)^2016 >0; (2y-1)^2016>0; /x+2y-z/^2017>0
Mà tổng ba số trên bằng 0
=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0
=>x=1; y=1/2; z= 2
\(\text{Tìm x }2x^2\left(x-1\right)-3x\left(x-1\right)+2016\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2-3x+2013\right)=0\Leftrightarrow\left(x-1\right)\left(2\left(x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}\right)+2013-\frac{9}{8}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2\left(x-\frac{3}{4}\right)^2+2011\frac{7}{8}\right)=0\)(1)
Do \(\left(2\left(x-\frac{3}{4}\right)^2+2011\frac{7}{8}\right)>0\forall x\)nên
(1) <=> x - 1 = 0 <=> x = 1.
Tìm x biết : \(|\left|3x-3\right|+2x+\left(-1\right)^{2016}|=3x+2017^0\)
Cho đẳng thức :\(x\times\left(x+1\right)\times\left(x+2\right)\times.............\times\left(x+2016\right)=2016\)(với x>0)
Chứng tỏ rằng \(x< \dfrac{1}{2015!}\)
Ta có \(x=\dfrac{2016}{x\times\left(x+1\right)\times\left(x+2\right)\times........\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times...........\times2016}\)
Vì x > 0=> \(\left(x+1\right)\times\left(x+2\right)\times...\times\left(x+2016\right)>1\times2\times...\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{1}{1\times2\times..........\times2016}\)\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Ta có \(x=\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times....\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times.....\times2016}\)
Vì x>0=>(x+1)×(x+2)×.............×(x+2016) >\(1\times2\times.....\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{1}{1\times2\times......\times2016}\)
\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Tìm các số x , y, z biết:
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+|x+2y-z|^{2017}=0\)
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)
Vậy...
Cho đẳng thức: \(x.\left(x+1\right).\left(x+2\right).\left(x+3\right).....\left(x+2016\right)=2016\) (với\(x>0\) )
Chứng tỏ rằng: \(x< \frac{1}{2015!}\)
Cho a,b,c >0; biết \(\hept{\begin{cases}a^2=b+4032\\x+y+z=a\\x^2+y^2+z^2=b\end{cases}}\)
\(P=x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}+y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{\left(2016+y^2\right)}}+z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{\left(2016+z^2\right)}}\)
Chứng minh giá trị của P không phụ thuộc vào x,y,z
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)