Tìm số dư của n3 + 5n+aaa+1954 _9a khi chia cho 6,a là chữ số
TÌm số dư của n3+5n+aaa+1954-9a khi chia cho 6, với n thuộc Z, a là chữ số.
Ta có: n3 + 5n + aaa + 1954 - 9a = ( n3 - n + 6n ) + a.( 111 - 9 ) + 1954
= [ n.( n2 - 1 ) + 6n ] + 102a + 1954
= [ n.( n2 - n + n - 1 ) + 6n ] + 102a + 1954
= { n.[ ( n2 - n ) + ( n - 1 ) + 6n ] + 102a + 1954
= { n.[ n.( n - 1 ) + 1.( n - 1 ) + 6n ] + 102a + 1954
= [ n.( n + 1 ).( n - 1 ) + 6n ] + 102a + 1954
= n.( n + 1 ).( n - 1 ) + 6n + 102a + 1954
*Nhận xét:
- Ta có: n ; n + 1 ; n - 1 là ba số nguyên liên tiếp
Nên trong ba số trên có ít nhất một số chia hết cho 3 và một số chia hết cho 2
Suy ra n.( n + 1 ).( n - 1 ) chia hết cho cả 2 và 3
Do đó n.( n + 1 ).( n - 1 ) chia hết cho 6 ( 1 )
- Ta có: 6n chia hết cho 6 ( 2 )
- Ta có: 102 chia hết cho 6
Suy ra 102a chia hết cho 6 ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra n.( n + 1 ).( n - 1 ) + 6n + 102a chia hết cho 6
Hay n3 + 5n + aaa - 9a chia hết cho 6
Mà 1954 chia 6 dư 4
Vậy n3 + 5n + aaa + 1954 - 9a chia 6 dư 4
*Lưu ý: Bài viết thuộc quyền sở hữu của Nguyễn Văn Hưởng Corporation.
Vui lòng không re-upload lại bài viết dưới mọi hình thức.
tìm số dư của n3 + 5n + aaa + 1954 - 9a khi chia cho 6 với n thuộc số nguyên a là chứ số
Tìm số dư của n^3 + 5n + aaa + 1954 -9a khi chia cho 6 với n Thược Z
Đúng mk tick nhé
Mk cx cần câu đó nè, Bn tên thật là j zợ?
Bài 1: Chứng minh: (n + 2)/13 và (n – 4)/13 không thể đồng thời là số nguyên.
Bài 2:Với số tự nhiên n, hãy tìm số dư khi chia n3 + 6n2 + 5n – 2 cho 6
Khi chia số có 2 chữ số cho số có 1 chữ số ta được thương bằng số chia và số dư là 8.tìm số bị chia số chia và thương của phép chia đó
Vì số dư nhỏ hơn số chia nên số chia lớn hơn 8 mà số chia là số có 1 chữ số
=> số chia là 9=> thương là 9
=> số bị chia = số chia x thương +số dư
=9 x 9+8 =89
Vậy ta có phép tính 89 chia 9 bằng 9 dư 8
Làm lớp trưởng không sướng như em nghĩ đâu. dễ bị các bn khác ghét lắm. Rồi hơn nữa cấp 2 mà em làm lớp trưởng thì xác định là hoạt động nào của trường lớp em đều phải tham gia. hơn nữa là dễ bị tẩy chay lắm.
VÀ CÒN NỮA: EM CHƯA XEM LUẬT GỬI CÂU HỎI CỦA ONLINE MATH
Vì số dư nhỏ hơn số chia mà số dư là 8,số chia có 1 chữ số nên số chia = 9 => thương = 9
Số bị chia là: 9 x 9 = 81
Vậy thương là 9 và số bị chia bằng 81
.
1. Tìm số tự nhiên n và chữ số a biết : 1+2+3+4+.......+n = aaa
2.Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia hết cho 11
1+3+3+...+n=aaa
=> n(n-1):2=a.111
=>n(n-1)=a.222=a.3.2.37
=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36
vậy..............
?????????????????????????????????????????
2. Chứng minh rằng với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
3. Tìm x : a, x chia hết cho 4;7;8 và x nhỏ nhất . B, x chia hết cho 10,15 và x <100
5. Tìm số tự nhiên có 3 chữ số biết số đó khi chia cho 6 thì dư 5, chia cho 8 thì dư 7 chia cho 9 dư 8
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
1.Tìm x , biết :
|x+1|+3=8
2.Tìm các số tự nhiên n , sao cho :
a, n+6 chia hết cho n+2
b,5n + 27 chia hết cho 4
3.Số tự nhiên a khi chia cho 72 thì được số dư là 69 . Khi chia a cho 18 thì được thương bằng số dư . Tìm a .
1) \(\left|x+1\right|+3=8\\ \Rightarrow\left|x+1\right|=5\\ \Rightarrow x+1=5h\text{oặ}c=-5\\ \Rightarrow x=4;-6\)
2) \(n+6⋮n+2\\ \Rightarrow\left(n+2\right)+4⋮n+2\\ \Rightarrow4⋮n+2\\ \Rightarrow n+2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\)
b) \(5n+27⋮4\\ \Rightarrow4n+n+27⋮4\\ \Rightarrow n+27⋮4\)
n+27 chia hết cho 4 khi n chia 4 dư 3
=> n=4k+3 ( k thuộc N)
3) Gọi thương của phép chia là : k
=> a=72k+69
a chia cho 18 dư 15
=> thường là 15
=> a=18.15+15=285