Tìm n để B là số nguyên
B = \(\frac{6n+5}{2n-1}\)
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
Tìm n là số tự nhiên để S=\(\frac{6n+1}{2n+5}\)có GTLN
Tìm n thuộc Z để các phân số sau tối giản:
A=\(\frac{6n+8}{2n-1}\)
B=\(\frac{3n+5}{2n-1}\)
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
tìm n thuộc Z để A,B là các số nguyên.
A=\(\frac{3n+9}{n-4}\); B=\(\frac{6n+5}{2n-1}\)
Tìm số tự nhiên n để B= 6n+5 / 2n-1 là số tự nhiên
Answer:
Để B là số tự nhiên thì: \(6n+5⋮2n+1\)
\(2n+1⋮2n+1\Rightarrow3.\left(2n+1\right)⋮2n+1\Rightarrow6n+3⋮2n+1\)
\(\Rightarrow6n+5-\left(6n+3\right)⋮2n+1\)
\(\Rightarrow2⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow2n\in\left\{0;1;-2;-3\right\}\)
Mà ta có: \(2n⋮2\)
\(\Rightarrow2n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Mà đề yêu cầu tìm n là số tự nhiên \(\Rightarrow n=0\)
Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó :
\(a,A=\frac{3n+9}{n-4}\)
\(b,B=\frac{6n+5}{2n-1}\)
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Tìm số nguyên n để phân số sau có giá trị nguyên:
a) A = \(\frac{3n+9}{n-4}\)
b) B = \(\frac{6n+5}{2n-1}\)
c) C = \(\frac{n^2+2n-4}{n+1}\)
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Bài giải
Ta có : \(A=\frac{3n+9}{n-4}\) có giá trị nguyên khi \(3n+9\text{ }⋮\text{ }n-4\)
\(A=\frac{3n+9}{n-4}=\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{12+9}{n-4}=3+\frac{21}{n-4}\)
\(\Rightarrow\text{ }A\) đạt giá trị nguyên khi \(21\text{ }⋮\text{ }n-4\)
\(\Leftrightarrow\text{ }n-4\inƯ\left(21\right)=\left\{\pm1\text{ ; }\pm3\text{ ; }\pm7\text{ ; }\pm21\right\}\)
\(\Rightarrow\text{ }\) n - 4 = -1 \(\Rightarrow\) n = - 1 + 4 \(\Rightarrow\) n = 3
n - 4 = 1 \(\Rightarrow\) n = 1 + 4 \(\Rightarrow\) n = 5
n - 4 = - 3 \(\Rightarrow\) n = -3 + 4 \(\Rightarrow\) n = 1
n - 4 = 3 \(\Rightarrow\) n = 3 + 4 \(\Rightarrow\) n = 7
n - 4 = -7 \(\Rightarrow\) n = - 7 + 4 \(\Rightarrow\) n = -3
n - 4 = 7 \(\Rightarrow\) n = 7 + 4 \(\Rightarrow\) n = 11
n - 4 = - 21 \(\Rightarrow\) n = - 21 + 4 \(\Rightarrow\) n = - 17
n - 4 = 21 \(\Rightarrow\) n = 21 + 4 \(\Rightarrow\) n = 25
Vậy A đạt giá trị nguyên khi \(n\in\left\{3\text{ ; }5\text{ ; }1\text{ ; }7\text{ ; }-3\text{ ; }11\text{ ; }-17\text{ ; }25\right\}\)
tìm các số nguyên N để các phân số sau có giá trị là số nguyên và tính giá trị đó :
A = \(\frac{3n-9}{n-4}\)
B = \(\frac{6n+5}{2n-1}\)
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
câu đầu là 3 chia hết cho n-4=>n-4 E Ư(3) nhé