Cho abc khác 1 hoặc -1 và (ab+1)/b=(bc+1)/c=(ca+1)/a.CMR: a=b=c
Cho các số a, b, c khác 0 thỏa mãn abc khác 1 và -1 và (ab+1)/b+(bc+1)/c+(ca+1)/a. cm a=b=c
cho a b c khác 0 và 1/a+1/b+1/c=0 cmr 1/ab+1/bc+1/ca nhỏ hơn hoặc bằng 0
cho abc khác 1;-1 và [ab+1]/b=[bc+1]/c=[ca+1]/a.chứng minh a=b=c
cho (a+b+c)^2 = a^2 + b^2 +c^2 và abc khác 0
cmr bc/a^2 + ac/b^2 +ab/c^2 = 3
cho abc=1. rút gọn
a/ab+a+1 + b/bc+b+1 + c/ca+c+1
Cho abc khác 1 và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\).Chứng minh a=b=c
Ta có : \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
Từ \(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{1}{c}-\frac{1}{b}\Leftrightarrow a-b=\frac{b-c}{bc}\)(1)
Tương tự : \(b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow b-c=\frac{c-a}{ac}\) (2) ; \(c+\frac{1}{a}=a+\frac{1}{b}\Leftrightarrow c-a=\frac{a-b}{ab}\)(3)
Nhân (1) , (2), (3) theo vế :
\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)
Vì abc khác 1 nên\(a^2b^2c^2\ne1\) \(\Rightarrow1-\frac{1}{a^2b^2c^2}\ne0\)
Do đó \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\Rightarrow\)a = b hoặc b = c hoặc c = a
Với a = b , từ giả thiết ta có b = c => a = b = cVới b = c , từ giả thiết ta có c = a => a = b = cVới c = a , từ giả thiết ta có a = b => a = b = cVậy a = b = c
Cho a,b,c dương và\(\frac{\sqrt{ab}+1}{\sqrt{b}}=\frac{\sqrt{bc}+1}{\sqrt{c}}=\frac{\sqrt{ca}+1}{\sqrt{a}}\).
C/m a=b=c hoặc abc=1
cho a, b, c thỏa mãn a khác +-1 và abc=1
Rút gọn biểu thức M=ab+bc+ca-a-b-c /a^2b -a^2-b+1
Cho abc khác 1; -1 và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\)
Chứng minh rằng: a=b=c
ap dung tinh chat day ti so bang nhau la dc
a) CMR:(x+a)*(x+b)*(x+c) = x3 + (a+b+c)*k + (ab+bc+ca)*x + abc
b) Áp dụng: (1+a)*(1+b)*(1+c) = ???
c) Cho a; b; c bé hơn hoặc bằng 1. CMR
1 lớn hơn hoặc bằng a + b + c - (ab+bc+ca) + abc
Đây là toán 8 nâng cao, các bạn giúp mình nhé! Cảm ơn ạ! 😙💕❤💋💦