Bài 2 : Tìm x,y thuộc Z sao cho \(\frac{x}{2}-\frac{3}{y}=\frac{1}{4}\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
tìm cặp số tự nhiên sao cho:
a, \(\frac{4}{x}-\frac{y}{3}=\frac{5}{6}\)( x, y thuộc N )
b, \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) ( x , y thuộc Z )
c, \(\frac{x}{6}_{ }-\frac{2}{y}=\frac{1}{30}\) ( x, y thuộc Z )
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Bài 1: Tìm x,y,z biết:
a: (x+2).(y-3)=5
b: (x+1).(xy-1)=3
c: \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
d:\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
e: x+y+z=x.y.z (x,y,z thuộc N)
f: 3x2 + 5y2 = 12 (x,y,z thuộc N)
a) TA có:
(x+2)x(y-3)=5 => x+2 và y-3 thuộc Ư(5)= 1,5,-1,-5
Ta có bảng
x+2 | 1 | 5 | -1 | -5 |
y-3 | 5 | 1 | -5 | -1 |
x | -1 | 3 | -3 | -7 |
y | 8 | 4 | -2 | 2 |
tìm x, y, z sao cho x ^3 - (x+y + z)^ 3 = ( y+ z ) ^ 3 + 34
tìm x, y thuộc Z sao cho \(\frac{x+y}{x^2-xy+y^2}\)= \(\frac{3}{7}\)
tìm x, y thuộc Z x ^4 - 7^y = 2014
giúp mk đi mọi người ơi
bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Bài 1: Tìm x;y;z sao cho x+y+z = \(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Có làm thì mới có tick
Ta có \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z+x+z+x+y-2-3+5}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y + z = 1/2
Lại có \(\hept{\begin{cases}\frac{x}{y+z-2}=\frac{1}{2}\\\frac{y}{z+x-3}=\frac{1}{2}\\\frac{z}{x+y+5}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2x=y+z-2\\2y=x+z-3\\2z=x+y+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=x+y+z-2\\3y=x+y+z-3\\3z=x+y+z+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=-\frac{3}{2}\\3y=-\frac{5}{2}\\3z=\frac{11}{2}\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)
Dễ thấy nếu x=0 thì y=z=0=>x=y=z=0 là 1 bộ giá trị phải tìm.
giả sử x,y,z khác 0 thì theo đề bài \(x+y+z\ne0\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Thay kết quả vào dãy tỉ số ban đầu, ta được: \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
Vậy ta có x=y=z =0 hoặc \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Tìm x,y,z thuộc Q
a, \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z+2004|\)
b, \(|x+\frac{9}{2}|+|y+\frac{4}{3}|+|z+\frac{7}{2}|\le0\)
c,\(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)
d, \(|x+\frac{3}{4}|+|y-\frac{2}{5}|+|z+\frac{1}{2}|\le0\)
bài 1: vẽ đồ thị y = -x, y = \(\frac{1}{2}\), y = 2x + 1
bài 2: cho P = \(\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)(x>= 0, x khác 16)
a, rút gọn P
b, tính P khi x = 25
c, tìm x thuộc Z để P thuộc Z
d, tìm Min P
Bài 1
***\(y=-x\)
Cho \(x=0\Rightarrow y=0\)
\(x=-1\Rightarrow y=1\)
Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)
*** \(y=\frac{1}{2}x\)
Cho \(x=0\Rightarrow y=0\)
\(x=2\Rightarrow y=1\)
Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)
*** \(y=2x+1\)
Cho \(x=0\Rightarrow y=1\)
\(y=-1\Rightarrow x=-1\)
Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)
Bài 2
a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)
b, Với x = 25
\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)
c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)
Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)
\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)
\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)
\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)
\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)
\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)
\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)
\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất
\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '
\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0
vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1
gải hộ mk bài toán này vs ak
bài này bài lp 8 cx thuộc dạng lp 9
đề : tìm x,y ,z biết
bài a:\(\frac{x}{y}\)= \(\frac{2}{3}\)và x.y =54
bài b : \(\frac{x}{2}\)=\(\frac{y}{4}\)=\(\frac{z}{7}\)và x + y + z = 28
bài c : \(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+2}\)=\(\frac{z}{x+y-3}\)= x+y+z
facebook: Khánh My
bạn đưa về 1 ẩn rồi giải nhen :
a) \(\frac{x}{y}=\frac{2}{3}\Rightarrow y=\frac{3x}{2}\)
Ta có : \(x.y=54\Leftrightarrow x.\frac{3x}{2}=54\)
\(\Rightarrow3x^2=108\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)