Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc An Pham
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Trên con đường thành côn...
27 tháng 1 2022 lúc 17:45

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))

 

Nguyễn Trần Hoa Cương
Xem chi tiết
Minh Hiếu
17 tháng 3 2022 lúc 16:21

Câu 1:

Áp dụng BĐT Cô si cho 4 số dương, ta có:

\(a^4+b^4+c^4+d^4\ge4.^4\sqrt{\left(abcd\right)^4}=4abcd\)

Dấu "=" \(\Leftrightarrow a=b=c=d\)

Câu 2:

Gọi quãng đường AB là x km (x>0)

\(V_{tb}=\dfrac{S}{t}=\dfrac{x}{\dfrac{x}{\dfrac{2}{20}}+\dfrac{x}{\dfrac{2}{30}}}=\dfrac{x}{\dfrac{x}{40}+\dfrac{x}{60}}=\dfrac{x}{\dfrac{5x}{120}}=\dfrac{120x}{5x}=\dfrac{120}{5}=24\left(\text{km/h}\right)\)

Vậy ...

Phan Thị Yến Vy
Xem chi tiết
Võ Thị Mạnh
Xem chi tiết
Mai Đặng Trí Vũ
26 tháng 12 2021 lúc 20:10

D. =B4+C4 
Chúc bạn học tốt

đặng ngọc pháp
16 tháng 5 2023 lúc 5:29

D.=B4+C4

chúc bạn học tốt

Kitana
Xem chi tiết
Kitana
Xem chi tiết
Lương Ngọc Nguyên
Xem chi tiết
Lương Ngọc Nguyên
5 tháng 4 2023 lúc 22:17

mấy bạn trả lời nhanh nhanh giúp mik vs

 

dmdaumoi
Xem chi tiết
Huyền
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Trịnh Phú Vinh
27 tháng 9 2023 lúc 13:30

Ta có \(a^4+b^4\ge2a^2.b^2\) (Bất đẳng thức Cô si với \(a^2;b^2\ge0\) )
Tương tự \(b^4+c^4\ge2b^2.c^2;a^4+c^4\ge2a^2.c^2\)
Do đó: \(a^4+b^4+c^4\ge\dfrac{2a^2b^2+2b^2c^2+2a^2c^2}{2}=a^2b^2+b^2c^2+a^2c^2\)(1)
Ta lại có:\(a^2b^2+b^2c^2\ge2ab^2c;b^2c^2+a^2c^2\ge2abc^2;a^2c^2+a^2b^2\ge2a^2bc\)
Nên\(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)=3abc\left(a+b+c=3,gt\right)\)
(1);(2) => \(a^4+b^4+c^4\ge3abc\) ;đẳng thức xảy ra khi a = b = c = 1 (*)
Giả sử: \(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-ab-bc-ac\right]\ge0\\2.3\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\\ \Leftrightarrow3\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\\\Leftrightarrow3\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
Đúng mới mọi a,b,c ϵR 
Vậy \(a^3+b^3+c^3\ge3abc\) và đẳng thức xảy ra khi a=b=c=(a+b+c)/3 =1(**)
Ta lại có \(a^4\ge a^3;b^4\ge b^3;c^4\ge c^3\) mà a+b+c = 3
Nên \(a^4+b^4+c^4>a^3+b^3+c^3\) (***)
Từ (*);(**);(***) ta có điều phải chứng minh và đẳng thức xảy ra khi a= b=c=1
 

Vũ Trần Giang
18 tháng 4 lúc 18:58

Tôi có cách chứng minh bằng đồng bậc hóa bất đẳng thức như sau:

ta sẽ chứng minh:

\(3\left(a^4+b^4+c^4\right)>=\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
<=> \(2\left(a^4+b^4+c^4\right)>=ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

mà ta có theo bất đẳng thức AMGM \(a^4+b^4>=\dfrac{\left(a^2+b^2\right)^2}{2}>=\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
làm tương tự rồi cộng lại, ta có đpcm.