Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
uzumaki naruto
Xem chi tiết
Ben 10
24 tháng 8 2017 lúc 10:47

Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5 
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!

uzumaki naruto
Xem chi tiết
Nguyễn Đào Anh Khoa
Xem chi tiết
alibaba nguyễn
7 tháng 6 2017 lúc 22:03

Ac. Có bài giải lúc nào vậy.

Thiên An
7 tháng 6 2017 lúc 21:44

Ta có   \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\)  \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\)  \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\)  \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\)  a = -b hoặc b = -c hoặc c = -a

1) Nếu a = -b thì  \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)

\(\Rightarrow\)  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)

Tương tự cho 2 trường hợp còn lại suy ra đpcm.

alibaba nguyễn
7 tháng 6 2017 lúc 22:00

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)thì

\(\hept{\begin{cases}\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\\\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{c^{2n+1}}\end{cases}}\)

\(\Rightarrow\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)

Tương tự cho 2 trường hợp còn lại ta có điều phải chứng minh.

Mai Thành Đạt
Xem chi tiết
Đỗ Lê Tú Linh
13 tháng 6 2016 lúc 22:33

a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc

=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc

=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)

=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)

=(ab+ac+b2+bc)(c+a)

=(a+b)(b+c)(c+a)

Hoàng Lê Bảo Ngọc
13 tháng 6 2016 lúc 22:40

a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)

\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)

\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )

\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)

Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thức 

Mà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)

Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.

\(\)

Kinomoto Sakura
Xem chi tiết
Trần Lê Anh Quân
Xem chi tiết
Đoàn Đức Hà
22 tháng 1 2021 lúc 15:59

\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)

\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)

\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).

Khách vãng lai đã xóa
Nguyễn Ngọc Tấn Tài
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Ngô Văn Phương
Xem chi tiết