\((x-2)(x-4)(x-10)(x-5)-54x^{2}\)= 0
\((x-2)(x-4)(x-10)(x-5)-54x^{2}=0\)
\(\left(x-2\right)\left(x-4\right)\left(x-10\right)\left(x-5\right)-54x^2=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x-10\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]=54x^2\\ \Leftrightarrow\left(x^2-12x+20\right)\left(x^2-9x+20\right)=54x^2\)
Với x=0: ko phải nghiệm của pt
Với x≠0
\(pt\Leftrightarrow\dfrac{x^2-12x+20}{x}.\dfrac{x^2-9x+20}{x}=\dfrac{54x^2}{x^2}\\ \Leftrightarrow\left(x-12+\dfrac{20}{x}\right)\left(x-9+\dfrac{20}{x}\right)=54\left(1\right)\)
Đặt \(x+\dfrac{20}{x}=y\)
\(\left(1\right)\Leftrightarrow\left(y-12\right)\left(y-9\right)=54\\ \Leftrightarrow y^2-21y+108-54=0\\ \Leftrightarrow y^2-21y+54=0\\ \Leftrightarrow\left[{}\begin{matrix}y=3\\y=18\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{20}{x}-3=0\\x+\dfrac{20}{x}-18=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+20=0\left(vô.lí\right)\\x^2-18x+20=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=9+\sqrt{61}\\x=9-\sqrt{61}\end{matrix}\right.\)
\(\left(x-2\right)\left(x-10\right)\left(x-4\right)\left(x-5\right)-54x^2=0\)
\(\Leftrightarrow\left(x^2+20-12x\right)\left(x^2+20-9x\right)-54x^2=0\)
\(\Leftrightarrow\left(x^2+20\right)^2-21x\left(x^2+20\right)+108x^2-54x^2=0\)
\(\Leftrightarrow\left(x^2+20\right)^2-21x\left(x^2+20\right)+54x^2=0\)
\(\Leftrightarrow\left(x^2+20\right)^2-3x\left(x^2+20\right)-18x\left(x^2+20\right)+54x^2=0\)
\(\Leftrightarrow\left(x^2+20\right)\left(x^2+20-3x\right)-18x\left(x^2+20-3x\right)=0\)
\(\Leftrightarrow\left(x^2+20-3x\right)\left(x^2+20-18x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+20=0\left(vô-nghiệm\right)\\x^2-18x+20=0\end{matrix}\right.\)
\(\Rightarrow x^2-18x+81-61=0\)
\(\Rightarrow\left(x-9\right)^2=61\)
\(\Rightarrow x-9=\pm\sqrt{61}\)
\(\Rightarrow x=9\pm\sqrt{61}\)
Phân tích đa thức thành nhân tử:(x-2)(x-4)(x-5)(x-10)-54x^2
Bài 1
4) (x+3)(x-1)(x-5)(x+15)+64x^2
5) (x+2)(x-4)(x+6)(x-12)+36x^2
6) (x-2)(x-4)(x-5)(x-10)-54x^2
Phân tích thành nhân tử
4) (x+3)(x-1)(x-5)(x+15)+64x^2
5) (x+2)(x-4)(x+6)(x-12)+36x^2
6) (x-2)(x-4)(x-5)(x-10)-54x^2
Toán lớp 10 ahihi :
Giải các phương trình sau :
a. x^3 + 9x^2 + 27x - 1 = 0
b. 59x^3 + 54x^2+ 18x + 2 = 0
c. x^4 = 3x^2 + 10x + 4
d. x^4 - x^3 - 12x^2 + 13x + 5 = 0
Ai làm dc giúp mình với gấp lắm. Tks nhiều.
Phân tích thành nhân tử
4) (x+3)(x-1)(x-5)(x+15)+64x^2
5) (x+2)(x-4)(x+6)(x-12)+36x^2
6) (x-2)(x-4)(x-5)(x-10)-54x^2
Phân tích
1)(x-2)(x-4)(x-5)(x-10)-54x2
2)(x+2)(x-4)(x+6)(x-12)+36x2
3)4(x+5)(x+6)(x+10)(x+12)-3x2
4)(x+2)(x+3)(x+8)(x+12)-4x2
5)(x-18)(x-7)(x+35)(x+40)-67x2
(X-2)(x-4)(x-5)(x-10)-54x2
Phân tích đa thức trên thành nhân tử
Đặt \(A=\left(x-2\right)\left(x-4\right)\left(x-5\right)\left(x-10\right)-54x^2\)
\(=\left[\left(x-2\right)\left(x-10\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]-54x^2\)
\(=\left(x^2-12x+20\right)\left(x^2-9x+20\right)-54x^2\)
Đặt \(x^2-12x+20=t\)
Khi đó: \(A=t\left(t+3x\right)-54x^2\)
\(=t^2+3tx-54x^2\)
\(=t\left(t-6x\right)+9x\left(t-6x\right)\)
\(=\left(t-6x\right)\left(t+9x\right)\)
\(=\left(x^2-18x+20\right)\left(x^2-3x+20\right)\)
Bài 6 : Tìm x, biết :
a, ( 2x-5)^2 - ( 5+2x)^2 = 0
b, 27x^3 - 54x^2 + 36x = 8
c, ( x^3 + 8 ) - ( x+2) ( x-4) = 0
d, x^6 - 1 = 0
Giúp mk vs ạ mk đang cần gấp