Những câu hỏi liên quan
pham dung
Xem chi tiết
pham dung
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Bình luận (0)
Nguyễn Trần Lam Trúc
Xem chi tiết
Trên con đường thành côn...
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
Tâm Nguyễn
Xem chi tiết
Akai Haruma
10 tháng 8 2021 lúc 17:22

Bài 1:

$A=(n-1)(2n-3)-2n(n-3)-4n$

$=2n^2-5n+3-(2n^2-6n)-4n$

$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$

Ta có đpcm.

Bình luận (0)
Akai Haruma
10 tháng 8 2021 lúc 17:25

Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$

$=(2n-3)(n+2+n)+n(n+10)$

$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$

$=5n^2+8n-6=5n(n+3)-7(n+3)+15$

$=(n+3)(5n-7)+15$

Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$

$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$

$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$

Bình luận (0)
Book Raser
Xem chi tiết
Biokgnbnb
25 tháng 1 2015 lúc 9:51

1.a) goi d la uoc chung cua 2n+1 va 2n+3

Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d 

 Suy ra (2n+3)-(2n+1) chia het cho d 

             Suy ra 2 chia het cho d

             MA d la uoc cua mot so le  nen d=1

VAy 2n+1 va 2n+3 la so nguyen to cung nhau.

b) Goi d la uoc chung cua 2n+5 va 3n+7

Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d

Suy ra 3(2n+5)-2(3n+7) chia het cho d

Suy ra 6n+15-6n-14 chia het cho d

Suy ra 1 chia het cho d

Suy ra d=1

Vay 2n+5 va 3n+7 la so nguyen to cung nhau.

Cau 2)

Vi 2n+1 luon luon chia het cho 2n+1

Suy ra 2(2n+1) chia het cho 2n+1

Suy ra 4n+2 chia het cho 2n+1(1)

Gia su 4n+3 chia het cho 2n+1 (2)

Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1

suy ra 1 chia het cho 2n+1

suy ra 2n+1 =1

           2n=0

                n=0

Vay n=0 thi 4n+3 chia het cho 2n+1.

 

Bình luận (0)
Phan Huyền Trang
Xem chi tiết
Nguyễn Ngọc Minh Hương
15 tháng 10 2016 lúc 20:34

2/a)n=2

Bình luận (0)
ngọc
Xem chi tiết
Đặng Tường Vi
19 tháng 10 2015 lúc 19:55

mình biết câu a

a=[n+10].[n+15]chia hết cho 2

khi n là số chẵn thì n +10 sẽ chia hết cho 2

khi n là số lẻ thì 15+n sẽ chia hết cho 2

nên a chia hết cho 2

Bình luận (0)
Đỗ Lê Tú Linh
19 tháng 10 2015 lúc 19:58

a)nếu n=2k(kEN)

thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2

nếu n=2k+1(kEN)

thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2

Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2

b)(4n-5) chia hết cho 2n-1

4n-2-3 chia hết cho 2n-1

2(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}

=>2nE{2;4}

=>n E{1;2}

Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}

Bình luận (0)
Nguyễn Việt
Xem chi tiết
Nguyễn Ngọc Hà My
Xem chi tiết
Nguyễn Huy Tú
16 tháng 1 2021 lúc 12:13

c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)

\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)

hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

3n + 21-15-5
3n-1-33-7
n-1/3-11-7/3

Vì n thuộc N => n = { 1 ; -1 }

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Huy Tú
16 tháng 1 2021 lúc 12:32

b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)

n - 21-111-11
n3113-9
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Ngọc Hà My
16 tháng 1 2021 lúc 12:12

viết cách làm giúp mình và đáp án nhé

mình đang cần gấp trong trưa nay

Bình luận (0)
 Khách vãng lai đã xóa
Quang Nhật
Xem chi tiết
Trần Đình Thiên
22 tháng 7 2023 lúc 21:38

bài 5:Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9.

bài 6:a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120.

bài 7:Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n.

bài 8:a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c). 

bài 9:a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24.

bài 10:Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.

Bình luận (0)
Trần Đình Thiên
22 tháng 7 2023 lúc 21:42
Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. ChatGPT chưa có được câu trả lời, vui lòng quay lại sau a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120. Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n. a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c). a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24. Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.
Bình luận (0)