p= 3xy2+2x+6 và Q=-7x+8xy2+8
Bài 1: Tìm Q
x2y−8xy2−1,5x2y2+1+Q=−3xy2+3,5x2y−5x2y−9
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-3y\right)-6\left(x-3y\right)=3\left(x-3y\right)\left(x-2\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)=y\left(xy+2\right)\left(x-3\right)\)
d: \(4x^2y^2-8xy^2+4y^2\)
\(=4y^2\left(x^2-2x+1\right)\)
\(=4y^2\left(x-1\right)^2\)
e: \(x^3y+10x^2y+35xy\)
\(=xy\left(x^2+10x+35\right)\)
f: \(2x^3-4x^2y+2xy^2-8x\)
\(=2x\left(x^2-2xy+y^2-4\right)\)
\(=2x\left(x-y-2\right)\left(x-y+2\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
a/ 4x3 – xy2
b/ 5x3 – 10x2 + 5x
c/4x2 +24x+36-4y2
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
a: \(4x^3-xy^2\)
\(=x\left(4x^2-y^2\right)\)
\(=x\left(2x-y\right)\left(2x+y\right)\)
b: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c: \(4x^2+24x+36-4y^2\)
\(=4\left(x^2+6x+9-y^2\right)\)
\(=4\left(x+3-y\right)\left(x+3+y\right)\)
a) \(4x^3-xy^2=x\left(4x^2-y^2\right)=x\left(2x-y\right)\left(2x+y\right)\)
b) \(5x^3-10x^2+5x=5x\left(x^2-2x+1\right)=5x\left(x-1\right)^2\)
c) \(4x^2+24x+36-4y^2=\left(2x+6\right)^2-4y^2=\left(2x+6-2y\right)\left(2x+6+2y\right)\)
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-2\right)-9y\left(x-2\right)=3\left(x-2\right)\left(x-3y\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
Tìm đa thức M.
P=3x2-2x+5xy2-7y2 và Q=3xy2-7y2-9x2y-x-5
a)M-P+Q=0
b)M-P-Q=0
a. \(M-P+Q=0\)
\(=>M=P-Q\)
\(=>M=3x^2-2x+5xy^2-7y^2-3xy^2+7y^2+9x^2y+x+5\)
\(=>M=3x^2+2xy^2+9x^2y-x+5\)
b.\(M-P-Q=0\)
\(=>M=P+Q\)
\(=>M=3x^2-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5\)
\(=>M=3x^2+8xy^2-14y^2-9x^2y-3x-5\)
a, x3 - 2x2 - 5x + 6 = 0
b, \((\) 2x2 + 7x - 8\()\) . \((\) 2x2 +7x - 3 \()\) = 6
a) \(x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy ..............................
b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :
\(\left(a-5\right)\cdot a=6\)
\(\Leftrightarrow a^2-5a-6=0\)
nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)
\(\Rightarrow a_1=1\)
\(a_2=\dfrac{-6}{1}=-6\)
Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)
\(\Leftrightarrow2x^2+7x-4=0\)
\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)
\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)
Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)
\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)
\(\sqrt{\Delta}=\sqrt{25}=5\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)
\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)
Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm
Cho các đa thức
P = 3x2y − 2x + 5xy2 − 7y2 và Q = 3xy2 − 7y2 − 9x2y – x – 5.
Tìm đa thức M sao cho M = P + Q
M = P + Q
= (3x2y − 2x + 5xy2 − 7y2) + (3xy2 − 7y2 − 9x2y – x – 5)
= 3x2y − 2x + 5xy2 − 7y2 + 3xy2 − 7y2 − 9x2y – x – 5
= (5xy2 + 3xy2) + (3x2y – 9x2y) – (2x + x) – (7y2 + 7y2) – 5
= 8xy2 − 6x2y − 3x − 14y2 – 5.
Cho các đa thức
P = 3x2y − 2x + 5xy2 − 7y2 và Q = 3xy2 − 7y2 − 9x2y – x – 5.
Tìm đa thức M sao cho
M = Q – P
M = Q – P
= (3xy2 − 7y2 − 9x2y – x – 5) - (3x2y − 2x + 5xy2 − 7y2)
= 3xy2 – 7y2 – 9x2y – x – 5 – 3x2y + 2x – 5xy2 + 7y2.
= (3xy2 – 5xy2) – (9x2y + 3x2y) + (2x – x) + (-7y2 + 7y2) – 5
= -2xy2 − 12x2y + x – 5
Bài 1: Thực hiện phép tính
a/ 5x2y (x2y– 4xy2 + 7xy)
b/ 3xy2 (x2y3 + x 2y – xy2 )
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
a/ 5x2y (x2y– 4xy2 + 7xy)
`=5x^4y^2-20x^3y^3+35x^3y^2`
b/ 3xy2 (x2y3 + x 2y – xy2 )
`=3x^3y^5+3x^3y^3-3x^2y^4`
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
`=36x^3+12x^2-15x+18x^3-18x^2+14x`
`=54x^3-6x^2-x`
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
`=10x^3-45x^2-25x-9x^3+63x^2+36x`
`=x^3+18x^2+11x`
x\(^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)