Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Trần Thảo Nguyên
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Lương Vy
Xem chi tiết
Nguyễn Ngọc Mai Anh
Xem chi tiết
Phùng Minh Quân
23 tháng 11 2018 lúc 20:33

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

luu thanh huyen
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Đặng Thanh Quang
9 tháng 5 2018 lúc 21:01

Đk \(x\ge1\)

Áp dụng bđt cosi có

\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)

\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)

\(\Rightarrow VT\le VP\)

Dấu = xay ra khi.........\(x=\frac{1+\sqrt{5}}{2}\)(do \(x\ge1\))

Huy Hoang
24 tháng 1 2021 lúc 15:25

*ĐK* : \(\hept{\begin{cases}x\ne0\\x-\frac{1}{2}\ge0\\1-\frac{1}{x}\ge0\end{cases}\Leftrightarrow x\ge1}\)(1)

             \(x\ge0\)( điều kiện cần )

\(\left(1\right)\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)

         \(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)

          \(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)

          \(\Leftrightarrow\sqrt{x}.\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( vì \(x\ge1>0\))

          \(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))

          \(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)

          \(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)

          \(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)

          \(\Leftrightarrow x^2-x-x=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)

          \(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))

Vậy nghiệm của PT trên là \(x=\frac{1+\sqrt{5}}{2}\)

Khách vãng lai đã xóa
do van tu
Xem chi tiết
Cỏ Cỏ
11 tháng 2 2017 lúc 22:24

Dk 1<x<2

√x^2 -x -2<x+2

5x+6>0

X > -6/5

Bpt vô nghiệm

Huy Lê
Xem chi tiết
doraemon
Xem chi tiết
Quang Trung
27 tháng 6 2021 lúc 15:31

đk : \(x\ge1\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)

\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( ví \(x\ge1>0\))

\(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))

\(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)( ta có thể lập pt 2 vế )

\(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)

\(\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)

\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))

Vậy nghiệm của pt là \(x=\frac{1+\sqrt{5}}{2}\)

Khách vãng lai đã xóa
nguyen hong
Xem chi tiết
Ngọc Vĩ
14 tháng 6 2016 lúc 21:29

hình như đề sai, ra nghiệm lẻ quá

Đặng Minh Triều
14 tháng 6 2016 lúc 21:47

cái đề của bà cũng lẻ tui nói sai đề bà có sửa đâu

Ngọc Vĩ
14 tháng 6 2016 lúc 21:50

==" ờ