Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phuong phuong
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 12:01

\(a,\) Muốn chứng minh \(a//b\) thì bạn phải sửa \(\widehat{B_1}=120\) nha

Ta có \(\widehat{A_1}+\widehat{A_2}=180\left(kề.bù\right)\Rightarrow\widehat{A_1}=180-\widehat{A_2}=120\)

Mà \(\widehat{B_1}=120\Rightarrow\widehat{A_1}=\widehat{B_1}\left(=120\right)\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow a//b\)

\(b,\left\{{}\begin{matrix}a\perp c\left(GT\right)\\a//b\left(cmt\right)\end{matrix}\right.\Rightarrow b\perp c\)

bui trong thanh nam
Xem chi tiết
.....
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2022 lúc 14:23

Bài 2: 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

hayΔADE cân tại A

b: Xét ΔABC có

AE/AB=AD/AC

nên DE//BC

c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

EC=DB

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

d: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

=>AK là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

Muichirou tokitou
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2023 lúc 18:49

loading...  loading...  

Alice
Xem chi tiết
Nguyễn Huy Tú
23 tháng 2 2022 lúc 15:09

a, Xét tam giác ABC cân tại A có AM là đường cao 

đồng thời là đường phân giác 

Xét tam giác AMH và tam giác AMK 

AM _ chung 

^MAH = ^MAK ( AM là phân giác ) 

Vậy tam giác AMH = tam giác AMK ( ch - gn ) 

=> AH = AK ( 2 cạnh tương ứng ) 

b, Ta có AH = AK ; AB = AC 

=> HK // BC ( Ta lét đảo )

 

Nguyễn Thái Thịnh
23 tháng 2 2022 lúc 15:15

Xét \(\Delta AHM,\Delta AKM\) có:

\(\widehat{AHM}=\widehat{AKM}=90^o\)

\(\widehat{A_1}=\widehat{A_2}\)

\(AM:chung\)

\(\Rightarrow\Delta AHM=\Delta AKM\left(ch.gn\right)\)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A

\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)

Vì \(\Delta ABC\) cân tại A 

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AHK}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

Suy ra \(HK//BC\)

Nguyễn Thị Tuyến
Xem chi tiết
Lightning Farron
14 tháng 12 2016 lúc 19:09

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:38

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

Nguyen Tien Hoc
Xem chi tiết
Đỗ Tuệ Lâm
26 tháng 2 2022 lúc 17:38

undefined