Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thu Phương
Xem chi tiết
Mai Thu Phương
29 tháng 6 2016 lúc 6:19

Giúp Mình với

Luyện Thanh Vân
Xem chi tiết
Aki Tsuki
7 tháng 10 2016 lúc 13:04

! là j z

 

Trần Nguyễn Bảo Quyên
7 tháng 10 2016 lúc 21:10

\("!"\)  là giai thừa đó bạn ạ .

\(VD:\)  \(3!=1.2.3=6\)

          \(4!=1.2.3.4=24\)

TfBoyS_TDT
Xem chi tiết
soyeon_Tiểubàng giải
11 tháng 9 2016 lúc 12:55

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\left(đpcm\right)\)

Ngọc
Xem chi tiết
Đinh Thùy Linh
27 tháng 6 2016 lúc 8:21

\(VT=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{97!}-\frac{1}{99!}+\frac{1}{98!}-\frac{1}{100!}\)

\(VT=2-\frac{1}{100!}< 2\)đpcm

o0o I am a studious pers...
27 tháng 6 2016 lúc 8:28

Ta xét vế trái nha 

\(VT=\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+.....+\frac{99.100-1}{100}\)

\(=1-\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{100}\)

\(=2-\frac{1}{100}\)

\(=>VT< VP\)

Kaori Miyazono
Xem chi tiết
Phạm Tuấn Đạt
3 tháng 9 2017 lúc 22:37

Ta xét :

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=2-\frac{1}{99}-\frac{1}{100}\)

Mà \(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\RightarrowĐPCM\)

le ngoc hieu
28 tháng 8 2017 lúc 20:26

 1.2−12! +2.3−13! +3.4−14! +....+99.100−1100=2 suy ra 1.2−12! +2.3−13! +3.4−14! +....+99.100−1100<2

zoombie hahaha
Xem chi tiết
Hồ Thu Giang
5 tháng 9 2015 lúc 16:24

 

\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(2+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(2-\frac{1}{99!}-\frac{1}{100!}

Game Master VN
30 tháng 6 2018 lúc 7:30

tớ là một youtuber link đây https://www.youtube.com/channel/UCRoT6fvb0VTS8S1EFsH0qGg?sub_confimation=1 nhớ đăng ký, , chia sẻ ủng hộ giúp mình nhé

zoombie hahaha
Xem chi tiết
nguyen thi huyen
5 tháng 9 2015 lúc 15:42

ta có:

1.2-1/2!+2.3-1/3!+3.4-1/4!+...+99.100-1/100!

=1.2/2!-1/2!+2.3/3!-13!+...+99.100-1/100!

=(1.2/2!+2.3/3!+3.4-4!+...+99.100/100!)-(1/2!+1/3!+...+1/100!)

=(1+1+1/2+...+1/98!)_(1/2!+1/3!+...+1/100!)

=2-1/99!-1/100!<2

Phạm Tuấn Đạt
12 tháng 9 2017 lúc 23:24

Ta xét :

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=1+1-\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\RightarrowĐPCM\)

Doraemon
15 tháng 9 2018 lúc 9:03

Ta có:

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=1+1-\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{99}-\frac{1}{100}< 2\)

Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

mãi  mãi  là em
Xem chi tiết
Nguyễn Hưng Phát
23 tháng 6 2016 lúc 19:25

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+............+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+..........+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+.........+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+.....+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+.........+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

\(\Rightarrowđpcm\)

nguyễn hải bình
Xem chi tiết