Cho 12a + 3b= 1 và 7b-2a =9. Tính trung bình cộng của a và b
Nếu 22a+3b=1 và 12a-7b=-9 thì trung bình cộng của a và b là bằng bao nhiêu ?
Ta có:
(22a+3b)-(12a-7b)=1-(-9)
=>22a+3b-12a+7b=1+9
=>(22a-12a)+(3b+7b)=10
=>10a+10b=10
=>10(a+b)=10
=>a+b=1
=>(a=b)/2=1/2
Vậy: Trung bình cộng của a và b là 1/2
(Nếu thấy đúng thì like giùm mình nhé!)
Nếu 22a+3b=1 và 12a-7b=-9 thì trung bình cộng của a và b bằng :....... Ai giải đầy đủ và nhanh giúp mình nha 5 phút nữa mik đi học rùi nhanh nhất mik tick cho
22a+3b=1 (1)
12a-7b=-9 (2)
Lấy (1)-(2),vế theo vế ta được:
(22a+3b)-(12a-7b)=1-(-9)
=>22a+3b-12a+7b=1+9=10
=>(22a-12a)+(3b+7b)=10
=>10a+10b=10
=>10.(a+b)=10=>a+b=1
Khi đó trung bình cộng của a và b=\(\frac{a+b}{2}=\frac{1}{2}=0,5\)
Vậy.....
Nếu 22a+3b=1 và 12a-7b=-9 thì trung bình cộng của a và b =
Theo bài ra , ta có :
\(22a+3b=1\)(1)
\(12a-7b=-9\)(2)
Trừ vế theo vế của (1) và (2) ta được :
\(22a+3b-12a+7b=1--9\)
\(\Leftrightarrow10a+10b=10\)
\(\Leftrightarrow10\left(a+b\right)=10\)
\(\Leftrightarrow a+b=1\)
\(\Leftrightarrow\frac{a+b}{2}=\frac{1}{2}\)
Vậy trung bình cộng của a và b là \(\frac{1}{2}\)
Chúc bạn học tốt =))
Tính a, b, c
4a=3b, 7b=5c và 2a+ 3b - c= 186
2a=3b,5b=7c và 3a-7b+5c = 30
Ta có : 4a = 3b => 28a = 21b (1)
7b = 5c => 21b = 15c (2)
Từ (1) và (2) => 28a = 21b = 15c
Ta có : 28a = 21b = 15c \(=\frac{a}{\frac{1}{28}}=\frac{b}{\frac{1}{21}}=\frac{c}{\frac{1}{15}}=\frac{2a}{\frac{1}{14}}=\frac{3b}{\frac{1}{7}}=\frac{2a+3b-c}{\frac{1}{14}+\frac{1}{7}-\frac{1}{15}}=\frac{186}{\frac{31}{210}}=1260\)
Nên : 28a = 1260 => a = 45
21b = 1260 => b = 60
15c = 1260 => c = 84
Vậy ........................
Ta có:
\(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a}{15}=\frac{b}{20}\left(1\right)\)
\(7b=5c\)=>\(\frac{b}{5}=\frac{c}{7}\) => \(\frac{b}{20}=\frac{c}{28}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)=>\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)
=>\(\frac{a}{15}=3\)=>\(a=45\)
\(\frac{b}{20}=3\)=>\(b=60\)
\(\frac{c}{28}=3\)=>\(c=84\)
Vậy \(a=40;b=60;c=84\)
Ta có: \(2a=3b\)=> \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\)=>\(\frac{b}{7}=\frac{c}{5}\) =>\(\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
=>\(\frac{a}{21}=2\)=>\(a=42\)
\(\frac{b}{14}=2\)=>\(b=28\)
\(\frac{c}{10}=2\)=>\(c=20\)
Vậy \(a=42;b=28;c=20\)
Cho hai vectơ a → và b → khác vecto không và thảo mãn u → = a → + b → vuông góc với vecto v → = 2 a → - 3 b → và m → = 5 a → - 3 b → vuông góc với n → = - 2 a → + 7 b → . Tính góc tạo bởi hai vecto a → và b →
A. 60 °
B. 45 °
C. 90 °
D. 30 °
Cho hai số na và b biết 3a-2b=9 và 2a+4b=32
Tính số trung bình cộng của a và b
HELP ME PLEASE!!
CMR
-(-4a+5c-3b)-(2b-a+7c)+(-7b+3c-5a)=-9c-6b
-(2a-3c+b)+(-5b-4c+12a)-(-9b-4c+4a)+(-6a-3b-3c)+d=d
phá ngoặc lun nà
+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b
-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d
Biết:
2a + 3b + 2c = 5
5a + 4b + c = 55
a + b - 4c = 24
Tìm số Trung Bình Cộng của a;b và c
\(\hept{\begin{cases}2a+3b+2c=5\\5a+4b+c=55\\a+b-4c=24\end{cases}}\Leftrightarrow8a+8b-c=5+55+24\)
\(\Leftrightarrow8a+8b-c=84\)
\(\Leftrightarrow8\left(a+b\right)-c=84\)
\(\Leftrightarrow8\left(a+b\right)=84+c\)
\(\Rightarrow a+b+c=84\)
\(\Rightarrow TBC\left(a,b,c\right)=\frac{84}{3}=28\)
Tìm a,b,c biết
a, \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2< =0\)
b,\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< =0\)
c,\(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+19\right)^6< =0\)
d,\(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6< =0\)
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;