5a-3b/3a+2b=5c-3d/3c+2d
5a-3b/3a+2b=5c-3d/3c+2d
cho a/b=c/d. CMR:
a,5a-3b/3a+2b=5c-3d/3c+2d
b,2a+7b/a-2b=2c+d/c-2d
c,ac/bd=(ac)mũ 2/(bd)mũ 2
d,2a mũ 2+3c mũ 2/3b mũ 2+3d mũ 2=5a mũ 2-2c mũ 2/2b mũ 2- 2d mũ 2
Cho a/b=c/d.Chứng minh;
a)a-b/2a=c-d/2c
b)5a-3b/3a+2b=5c-3d/3c+2d
a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)
\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)
b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )
Cho tỉ lệ thức : a/b = c/d chứng minh rằng :
a) A - B /2a = C - D / 2c ; A + B / B = C+ D /D
b) 5a - 3b / 3a+2b = 5c - 3d / 3c+2d
\(Cho\) \(\frac{a}{b}=\frac{c}{d}\)
\(CMR:\)\(a,\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
\(b,\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b) Chứng minh tương tự
a/b+c+d=b/a+c+d=c/b+a+d=d/c+b+a
P=2a+5b/3c+4d-2b+5c/3d+4a-2c+5d/3a+4b+2d+5a/3c+4b
CMR:
từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ta suy ra được \(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{a}{c}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+3d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\) ( Vì cùng bằng \(\frac{a}{c}\))
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}\)
=> \(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\Rightarrow\)\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) (đpcm)
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
cho \(\frac{a}{b}=\frac{c}{d}\)(b,d khác 0)
\(\frac{2a+b}{2a-b}=\frac{2c+d}{2c-d}\)
\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
a.a/b=c/d=>.a/c=b/d=>2a/2c=b/d
ap dung tính chất dãy tỉ sồ bàng nhau ya có
2a/2c=b/d=2a+b/2c+d=2a-b/2c-d
=>2a+b/2a-b=2c+d/2c-d
b.a/b=c/d=>a/c=b/d=>5a/5c=3b/3d=3a/3c=2b/2d
áp dụng tính chat dãy ti số bang nhau ta co
5a/5c=3b/3d=3a/3c=2b/2d=5a-3b/5c-3d=3a+2b/3c+2d
5a-3b/3a+2b=5c-3d/3c+2d
bạn bấm vào đây cho mình nhé !CMR:từ tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$ab =cd ta suy ra được $\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}$5a−3b3a+2b =5c−3d3c+2d
dat a/b=c/d=k a=kb ;c=kd Xet 5a+3b/5a-3b=5kb+3b/5kb-3b= b(5k+3)/b(5k-3)=5k+3/5k-3 (1) Xet 5c+3d/5c-3d=5kd+3d/5kd-3d= d(5k+3)/d(5k-3)= 5k+3/5k-3 (2) Tu (1) va (2) Suy ra 5a+3b/5a-3b =5c+3d/5c-3d