5a-3b/3a+2b=5c-3d/3c+2d
cho a/b=c/d. CMR:
a,5a-3b/3a+2b=5c-3d/3c+2d
b,2a+7b/a-2b=2c+d/c-2d
c,ac/bd=(ac)mũ 2/(bd)mũ 2
d,2a mũ 2+3c mũ 2/3b mũ 2+3d mũ 2=5a mũ 2-2c mũ 2/2b mũ 2- 2d mũ 2
Cho a/b=c/d.Chứng minh;
a)a-b/2a=c-d/2c
b)5a-3b/3a+2b=5c-3d/3c+2d
\(Cho\) \(\frac{a}{b}=\frac{c}{d}\)
\(CMR:\)\(a,\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
\(b,\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
a/b+c+d=b/a+c+d=c/b+a+d=d/c+b+a
P=2a+5b/3c+4d-2b+5c/3d+4a-2c+5d/3a+4b+2d+5a/3c+4b
CMR:
từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ta suy ra được \(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
cho \(\frac{a}{b}=\frac{c}{d}\)(b,d khác 0)
\(\frac{2a+b}{2a-b}=\frac{2c+d}{2c-d}\)
\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)