3xy-2x-5y=7. tìm xy nguyên dương
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Bài1: Tìm x,y nguyên sao cho
a) x(y-3)=15 b)xy-2y+3(x-2)=7 c)xy-3x+y=15
Bai2: Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2 b)2xy+9x-11y=21 c)3xy-2x-5y=7
Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
b)3xy-2x-5y=7
1) Tìm x,y nguyên dương:
\(x^2-y^2+2x-4y-10=0\)
2) Tìm các số nguyên x,y thỏa mãn:
\(x^3+2x^2+3x+2=y^3\)
3) Giải phương trình nguyên sau:
a) \(2x+5y+3xy=8\)
b) \(xy-y-x=2\)
c) \(xy-2y-3x+x^2=3\)
d) \(x^2-xy=6x-5y-8\)
tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
c)3xy-2x-5y=7
ai giúp mk đk câu nào thì cứ giúp nha.
a)\(\left(2x+3\right)\left(3y+5\right)=17\)
b) \(\left(2y+9\right)\left(11-2x\right)=57\)
c) \(\left(3x-5\right)\left(3y-2\right)=31\)
Lần lượt xét từng trường hợp cho mỗi câu .
Tìm x,y nguyên LƯU Ý K GIẢI THEO HỆ PT MÀ GIẢI THEO PHƯƠNG PHÁP LỚP 7
x^2+xy+y^2=x+y
x^2+xy+y^2=2x+y
x^2 - 3xy + 3y^2= 3y
x^2-2xy+5y^2=y+1
Bài 1 Giải phương trình nghiệm nguyên sau :
a, 2x + 13y = 156
b, 2xy - 4x + y =7
c, 3xy + x - y =1
d, 2x^2 + 3xy - 2y^2 = 7
e, x^3 - y^3 =91
g, x^2 - xy = 6x -5y - 8
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
tìm các nghiệm nguyên dương của các phương trình
a/x^+xy+y^2
b/x^2+xy+y^2=x+y
c/x^2-3xy+2y^2=3y
d/x^2-2xy+5y^2=y+1
Tìm các số nguyên x,y biết:
a, 2xy-x +2y=0
b,5xy+x+3y=-1
c,2x2+ 3xy - 2y2 =7
d,x2 -xy=6x-5y-8