Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Hiếu Cao
Xem chi tiết
Ngọc Hiếu Cao
16 tháng 12 2019 lúc 9:20

Rút gọn giùm mik nha

Khách vãng lai đã xóa
Takanashi Hikari
Xem chi tiết
Thịnh Gia Vân
19 tháng 12 2020 lúc 20:13

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa
Nguyễn Thu Hương
Xem chi tiết
lê thị thủy
Xem chi tiết
Sỹ Tùng Thái
Xem chi tiết
Huy Nguyen Phan
Xem chi tiết
Trần Quốc Đạt
19 tháng 12 2016 lúc 18:48

Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)

ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)

Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).

Trường hợp 1: \(x-2y=1\)

Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)

Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)

Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)

Tới đây chắc bạn giải được rồi đó.

Trần Quốc Đạt
19 tháng 12 2016 lúc 20:29

Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).

Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).

Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).

Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\)\(x_2=2y-2-3=2y-5\).

Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).

Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.

hằng phạm
Xem chi tiết
Thắng Nguyễn
6 tháng 3 2016 lúc 20:16

ố ô dài thế tôi làm 1 nửa thôi nhá
 

Nguyễn duy Long
Xem chi tiết