Cho tam giác ABC vuông tại A, AB= 6, AC= 8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
c) Chứng minh AB.BI=BH.HB và tam giác AID cân
Cho tam giác ABC vuông tại A. Đường trung tuyến AM.Từ M , kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a.Chứng minh tứ giác ADME là hình chữ nhật
b.Cho AB =6 cm, AC= 8 cm. Tính diện tích tam giác ABC.
c.Tìm điều kiện của tam giác ABC để ADME là hình vuông
b: S=12cm2
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật
\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)
Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC
Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)
\(\Leftrightarrow\Delta ABC\) vuông cân tại A
Cho tam giác ABC vuông tại A có AB = 6, AC = 8. Tia phân giác góc B cắt AC tại D. Độ dài AD là:
A. 1,5
B. 3
C. 4,5
D. 4
Tam giác ABC vuông tại A, áp dụng định lý Pytago có: B C 2 = A B 2 + A C 2
BD là tia phân giác góc B nên D A D C = B A B C = 6 10 = 3 5 ⇒ D A 3 = D C 5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
D A 3 = D C 5 ⇒ D A + D C 3 + 5 = A C 8 = 8 8 = 1
=> DA= 3.1 = 3; DC = 5.1 = 5
Vậy AD = 3
Đáp án: B
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm. Tính khoảng cách từ trọng tâm G của tam giác ABC tới các đỉnh ABC
Gọi AM,BN,CE lần lượt là các đường trung tuyến của ΔABC
=>AM,BN,CE đồng quy tại G
BC=căn 6^2+8^2=10cm
=>AM=5cm
=>AG=10/3cm
AN=8/2=4cm
=>BN=căn 6^2+4^2=2*căn 13(cm)
=>BG=2/3*2căn 13=4/3*căn 13(cm)
AE=6/2=3cm
CE=căn 3^2+8^2=căn 73(cm)
=>CG=2/3*căn 73(cm)
Cho tam giác ABC vuông tại A, AB = 6 cm, AC = 8 cm. Tính khoảng cách từ trọng tâm G của tam giác ABC tới các đỉnh, của tam giác.
Cho tam giác ABC vuông tại A có AB=6;AC=8 đường cao AH
a.Tính BC;AH
b.Kẻ HE vuông góc với AB;HF vuông góc với AC.Chứng minh tam giác AEH đồng dạng với tam giác AHB
ABC vuông tại A Vẽ đường cao AH AB = (6 cm )AC = (8 cm) a) cho tam giác HBA đồng dạng tam giác ABC B) tính bc, ah, bh
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
cho tam giác ABC,AB=6,AC=8,BC=10.Kẻ AH vuông BC tại H
a.Cm:tam giác ABC vuông tại A
b.tính AH,BH,CH
cho tam giác ABC,AB=6,AC=8,BC=10.Kẻ AH vuông BC tại H
a.Cm:tam giác ABC vuông tại A
b.tính AH,BH,CH
cho tam giác ABC,AB=6,AC=8,BC=10.Kẻ AH vuông BC tại H
a.Cm:tam giác ABC vuông tại A
b.tính AH,BH,CH
1) cho tam giác ABC vuông tại a . tính bc VỚI trường hợp sau: 1)AB=3cm , AC=4cm . 2) AB=8, AC=6 . 3) AB=12 ,AC=16
1: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
2: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
3: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)