Các bạn Giúp mình nha.
CMR : \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
Cho a,b,c là các số thực dương thõa : a+b+c=3
CMR: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
CÁC BẠN ZẢI NHANH ZÚP
Ta có : \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}=\frac{3}{b+c}+\frac{3}{c+a}+\frac{3}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Ta cầm chứng minh : \(\hept{\begin{cases}\frac{3}{a+b}+\frac{3}{a+c}+\frac{3}{b+c}\ge\frac{9}{2}\left(1\right)\\\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\left(2\right)\end{cases}}\)
Ta có bđt (1) \(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge9\)
Áp dụng bđt AM GM ta có :
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\end{cases}}\)
Nhân vế với vế ta được đpcm ; Vậy bđt (1) đc chứng minh
Ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy bđt (2) đc chứng minh
Do 2 bất đẳng thức dước chứng minh
\(\Rightarrow\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge\frac{3}{2}+\frac{9}{2}=6\) (ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(Cho\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(CMR\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Các bạn giải ra rõ ràng từng bước giúp mình nha!
easy!
TH1:Với a+b+c=0 thì từ giả thiết,suy ra:
\(a+b=-c,b+c=-a,a+c=-b\)
Khi đó:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=-3\left(VL\right)\)
TH2:Với a+b+c khác 0,ta nhân 2 vế của giải thiết với a+b+c,ta có:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)
Đề thiếu \(đk:a+b+c\ne0\)
Vì nếu a+b+c=0 thì \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=-3\) (không đúng)
Vậy bổ sung \(đk:a+b+c\ne0\)nhé bạn
Giải
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
Suy ra \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0^{\left(đpcm\right)}\)
Cho các số thực a,b,c>0 thoae mãn a+b+c=3. Chứng minh:
\(N=\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)
các bạn giải chi tiết ra giùm mình nha! mình cảm ơn nhiều !
\(N=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)
\(\ge\frac{27}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{2}=6^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b =c = 1
Ta có đánh giá \(\frac{3+a^2}{3-a}\ge2a\) \(\forall a:0< a< 3\)
Thật vật, biến đổi tương đương: \(\Leftrightarrow3+a^2\ge2a\left(3-a\right)\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)
Tương tự: \(\frac{3+b^2}{3-b}\ge2b\) ; \(\frac{3+c^2}{3-c}\ge2c\)
Cộng vế với vế: \(N\ge2\left(a+b+c\right)=6\)
\("="\Leftrightarrow a=b=c=1\)
Ta có:
\(\frac{3+a^2}{b+c}=\frac{a^2+a+b+c}{b+c}=\frac{a^2+a}{b+c}+1=\frac{a^2}{b+c}+\frac{a}{b+c}+1\)
Tương tự,ta có:
\(\frac{3+b^2}{a+c}=\frac{b^2}{a+c}+\frac{b}{a+c}+1\)
\(\frac{3+c^2}{a+b}=\frac{c^2}{a+b}+\frac{c}{a+b}+1\)
Cộng vế theo vế của các đẳng thức,ta có:
\(N=3+\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}\right)\)
Áp dụng BĐT Cauchy-schwarz và BĐT Nesbitt,ta có:
\(N\ge3+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{3}{2}\)
\(=6\left(đpcm\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Các bạn giúp mình với nha:
Cho a,b,c>0 và a+b+c=1.
CMR\(\frac{a.b}{a^2+b^2}+\frac{b.c}{b^2+c^2}+\frac{c.a}{c^2+a^2}+\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
dự đoán của Thần thánh
\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)
\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)
áp dụng BDT cô si ta có
\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)
tương tự với các BDT còn lại suy ra
\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si ta có
\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)
tương tự với b^2+c^2 ta được
\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
" thay 1/3 vào ta được
\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)
mà \(a+b+c\ge3\sqrt[3]{abc}\)
thay a+b+c=1 vào ta được
\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "
bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)
\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)
mà a+b+C=1 suy ra
\(A\ge\frac{9}{4}\) "2"
từ 1 và 2 suy ra
\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
" đúng với dự đoán của thần thánh "
Nếu \(\frac{a}{b}=\frac{c}{d}\)CMR \(\frac{a+c}{b+d}=\frac{a}{b}\)
các bạn ơi giải giúp mình mai tớ kiểm tra rồi.thanks các bạn nhìu nha.
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Cho các số a, b, c là các số dương. CMR: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-6=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{c}{a}-2+\frac{a}{c}\right)\)
\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2+\left(\sqrt{\frac{c}{a}}-\sqrt{\frac{a}{c}}\right)^2\ge0\)
\(\Rightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
Dấu "=" xảy ra khi và chỉ khi a = b = c.
Cho a,b,c \(\in\)N* và \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Chứng minh rằng
\(a.\frac{a}{b}+\frac{b}{a}\ge2\)
\(b.S\ge6\)
Ai nhanh và đúng mình tick cho. Mình đang cần gấp. Mai phải nộp rồi, các bạn giúp mình nhé
a, Áp dụng bđt cosi ta có :
a/b + b/a >= \(2\sqrt{\frac{a}{b}.\frac{b}{a}}\)= 2
b, Tương tự câu (a) ta có : b/c + c/b >= 2 ; c/a + a/c >= 2
=> S - a/c + b/c + b/a + c/a + c/b + a/b = (a/b + b/a) + (b/c + c/b) + (c/a + a/c) >= 2+2+2 = 6
Tk mk nha
cmr \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{9\sqrt[3]{abc}}{a+b+c}\ge6\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
ko có đk ko cho biết cài zì
bố ai mà làm đc
các bạn ơi giúp mình với
cho a,b,c,d là các số nguyên dương
cmr \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\ge\frac{4}{3}\)
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
khoannnnnnnn, bn: Lê Hồ Trọng Tín ơi:
nếu a=1,b=2,c=1,d=1 thì: \(\frac{1}{2+1+1}=\frac{1}{4}-\frac{1}{3}\ge0???\)
mọe, t-i-k đúng nhầm :(((