GTLN của C=\(\frac{8}{\left(x+2\right)^2+\left(2-y\right)}\)
Các bạn giải giùm mjk nha!
Rút gọn
a, \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
,b \(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}^2}\) với x khác 1 y lhacs 1 và y>0
c, \(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
Các bạn giải giùm mik nha mik đang cần gấp
Tìm min của P=\(\frac{x^2}{\left(y+z\right)^2}+\frac{y^2}{\left(x+z\right)^2}+\frac{z^2}{\left(x+y\right)^2}\)
Các bạn giải giúp mk nha!!! MK cảm ơn trước =))
x, y, z thuộc R nên đâu có những thứ này
\(\sqrt{\frac{x^2}{\left(y+z\right)^2}}=\frac{x}{y+z}\)
và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{3}{2}\)
Mk cx biết vậy nhưng mk ko biết cách giải thôi !!! Bạn giải giúp mk nha =))
\(C=\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{1}{12}\right)\)
Giải nhanh giùm mình nha các bạn
Tìm x :
\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=\)16
Các bạn giải giùm mik nha nhớ làm đầy đủ đó nha
Tim các số tự nhiên x,y,z,t,biết:\(\frac{27}{4}=\frac{-x}{3}=\frac{3}{y^2}=\frac{\left(x+3\right)^3}{-4}=\frac{giátrituyetdoicua\left|t\right|-2}{8}\)
giải giùm mình nha(giá trị tuyệt đối của giá trị tuyệt đối mình ko biết viết kí hiệu nên viết bằng lời)!
Tìm nghiệm của phương trình sau : \(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
b) giải hệ phương trìh \(\hept{\begin{cases}\sqrt{x-2}+\sqrt{4-x}=y^2-6y+11\\x+y+z=0\end{cases}}\)
Các bạn giải chi tiết giùm mk nhé
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Sao mấy bài mình đưa chẳng bạn nào giải giùm thí?
Còn đây nè
Cho \(\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)tìm MIN\(P=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Cho \(x,y,z\in\left[0;2\right]\) . Tìm GTLN của biểu thức
\(P=\frac{1}{8}\left[\left(2-x\right)\left(2-y\right)\left(4-z\right)+\frac{8x}{y+z+2}+\frac{8y}{z+x+2}+\frac{8z}{x+y+2}\right]\)
Lời giải:
Đặt \((x,y,z)=(2a,b,2c)\Rightarrow a,b,c\in\left [ 0;1 \right ]\)
Bằng cách dự đoán điểm rơi, ta sẽ đi chứng minh $P\leq 2$, tức là CM:
\(P=(1-a)(1-b)(2-c)+\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\leq 2\). Thật vậy.
AM-GM cho bộ $1-a,1-b,a+b+1$ dương, ta có:
\(3=1-a+1-b+a+b+1\geq 3\sqrt[3]{(1-a)(1-b)(a+b+1)}\)
\(\Rightarrow (1-a)(1-b)(a+b+1)\leq 1\rightarrow (1-a)(1-b)(2-c)\leq \frac{2-c}{a+b+1}\)
Cần CM: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{2}{a+b+1}\leq 2\)\(\Leftrightarrow \frac{a}{b+c+1}+\frac{b}{a+c+1}\leq \frac{2a+2b}{a+b+1}\)
Hiển nhiên đúng vì \(b+c+1,a+c+1>\frac{a+b+1}{2}\forall a,b,c\in [0;1]\)
Vậy \(P_{max}=2\Leftrightarrow a=b=0;c\in [0;1]\)